Online Lernen | Mathematik Aufgaben | Funktionen Quadratische Funktionen Extremwertaufgaben mit Nebenbedingung lösen

Extremwertaufgaben mit Nebenbedingung lösen

Bei Extremwertaufgaben, auch Optimierungsaufgaben oder Extremwertprobleme genannt, wird, wie der Name schon sagt, nach einem Extrempunkt gesucht. Ein Extrempunkt ist ein Hochpunkt oder ein Tiefpunkt. So kann zum Beispiel nach der größtmöglichen Fläche, die mit einem Stück Zaun eingezäunt werden kann, gefragt werden. Die Schwierigkeit bei solchen Aufgaben ist es, die passende Funktion zu bilden. Wenn du das geschafft hast, ist es ganz einfach.
Wir schauen uns nun die Vorgehensweise einmal genauer an.

Extremwertaufgaben lösen: Vorgehensweise

Als erstes liest du dir die Aufgabe genau durch und fertigst eine Skizze an. Danach gehst du folgendermaßen vor:

Methode

Methode

Hier klicken zum Ausklappen

1. Hauptbedingung bestimmen:
Bilde zu dem Sachverhalt, der maximiert oder minimiert werden soll, die passende Funktion.

2. Nebenbedingung aufstellen:
Die gegebene Nebenbedingung muss auch in mathematischer Schreibweise notiert werden. Die Nebenbedingung ist immer eine Gleichung. In dieser Gleichung stehen vorerst immer zwei unterschiedliche Variablen, also z. B. $a$ und $b$.

3. Nebenbedingung umformen:
Forme die Nebenbedingung so um, dass eine der beiden Variablen alleine auf einer Seite der Gleichung steht.

4. Variable in Zielfunktion einsetzen:
Nun ersetzen wir in der Hauptbedingung eine Variable mit Hilfe der Nebenbedingung. Wir erhalten so eine Zielfunktion. In der Zielfunktion kommt nur noch eine Variable vor.

5. Extremwert berechnen:
Bei einer quadratischen Funktion ist der Extrempunkt immer der Scheitelpunkt. Diesen Punkt können wir mit der Formel zur Berechnung des Scheitelpunktes oder über die 1. Ableitung bestimmen. Eine andere Möglichkeit ist die quadratische Ergänzung.

6. Zweite Variable bestimmen:
Nachdem eine Variable bestimmt ist, können wir die zweite Variable ausrechnen, indem wir die bekannte Variable in die umgestellte Nebenbedingung einsetzen.                              

Abschließend muss nur noch die Lösung notiert werden.

Dies sieht zunächst sehr kompliziert aus. Schauen wir uns eine Extremwertaufgabe als Beispiel an, um es etwas einfacher zu machen.

Extremwertaufgaben lösen: Beispielaufgabe

Wie groß ist die größte rechteckige Fläche, die man mit einem 20 m langen Zaun einzäunen kann?

Zuerst machen wir uns eine Skizze:

Bitte Beschreibung eingeben

Die Fläche soll maximiert werden und der Umfang muss $20~m$ lang sein.

Vorgehensweise:

1. Hauptbedingung bestimmen

Bilde zu dem Sachverhalt, der maximiert oder minimiert werden soll, die passende Funktion.

Die Fläche soll maximiert werden. Also müssen wir hierzu die Funktion aufschreiben.

Die Formel für den Flächeninhalt eines Rechtecks lautet:

$A = a \cdot b$

 

2. Nebenbedingung aufstellen

Nun muss die Nebenbedingung auch in mathematischer Schreibweise notiert werden.

Unsere Nebenbedingung in dieser Aufgabe ist, dass der Zaun eine Länge von $20~m$ hat. Das bedeutet, dass der Umfang des Rechtecks $20~m$ betragen muss.

Die Formel für den Umfang eines Rechtecks lautet:

$U= 2\cdot a + 2\cdot b$

Der Umfang muss $20~m$ betragen. Wir können also $U = 20~m$ setzen.

$20~m= 2\cdot a + 2\cdot b$

 

3. Nebenbedingung umformen

Forme die Nebenbedingung so um, dass eine Variable alleine auf einer Seite der Gleichung steht.

Die Nebenbedingung können wir entweder nach $a$ oder nach $b$ umstellen. Wir stellen nun nach $a$ um:

$20m= 2\cdot a + 2\cdot b$     $|-2b$
$20m-2b=2a$                         $| :2$
$10m-b=a$
$a=10m-b$

 

4. Variable in Zielfunktion einsetzen

Nun ersetzen wir in der Hauptbedingung eine Variable. Wir erhalten so die Zielfunktion. In der Zielfunktion kommt nur noch eine Variable vor.

Die Hauptbedingung lautet: $A = a \cdot b$

Wir ersetzen nun $a$ durch $10m-b$:

$A = (10m-b)\cdot b$
$A = 10m\cdot b -b^2$

 

5. Extremwert berechnen

Bei einer quadratischen Funktion ist das gesuchte Extremum immer im Scheitelpunkt zu finden. Diesen Punkt können wir mit der Formel zur Scheitelpunktberechnung, durch Überführen in die Scheitelpunktform (über die quadratische Ergänzung) oder über die 1. Ableitung bestimmen.

Wir werden hier die quadratische Ergänzung anwenden. Klicke auf den Link, falls du dir die quadratische Ergänzung noch einmal anschauen möchtest.

$A = 10m\cdot b -b^2$
$A = -b^2+10m\cdot b$

Als erstes müssen wir den Faktor, der vor dem $b^2$ steht, ausklammern (hier: $-1$):
$A = -b^2+10m\cdot b$
$A = -(b^2-10m\cdot b)$

Nun muss die Zahl, die vor dem b steht (hier: $10~m$), zunächst durch 2 dividiert werden und das Ergebnis dann quadriert werden. Dieser Wert wird dann einmal addiert und einmal subtrahiert:
$A = -(b^2-10m\cdot b)$
$A = -(b^2-10m\cdot b+25m^2-25m^2)$

Der negative Wert, der nicht für die binomische Formel benötigt wird, muss ausgeklammert werden:
$A = -(b^2-10m\cdot b+25m^2)-(-25m^2)$

Jetzt können wir die binomische Formel anwenden:
$A = -(b-5m)^2+25m^2$

Abschließend können wir nun den Scheitelpunkt ablesen:
$S(5/25)$

Merke

Merke

Hier klicken zum Ausklappen

$f(x) = a\cdot(x−d)^2+e$
Scheitelpunkt: S $(d/e)$

Wenn $b= 5~m$ ist, dann beträgt der Flächeninhalt des Rechtecks $25~m^2$. Dies ist der größte Flächeninhalt, der möglich ist, wenn der Umfang $20~m$ betragen muss.

 

6. Zweite Variable bestimmen

Nachdem die erste Variable bestimmt ist, können wir die zweite Variable mithilfe der umgestellten Nebenbedingung ganz einfach berechnen.

$a=10m-b$
$a= 10m-5m$
$a=5m$

Das Ergebnis können wir überprüfen, indem wir $a$ und $b$ in die Hauptbedingung einsetzen:

$A=a\cdot b = 5m \cdot 5m = 25 m^2$

Dies stimmt mit unserem Scheitelpunkt überein.

Lösung: Wenn man mit einem $20~m$ langen Zaun eine möglichst große rechteckige Fläche einzäunen möchte, dann müssen die Seitenlängen des Rechtecks jeweils $5~m$ lang sein. Die Fläche des Rechtecks (bzw. Quadrats) ist dann maximal und beträgt $25~m^2$.

Teste dein neu erworbenes Wissen zu Extremwertaufgaben mit Nebenbedingung an unseren Übungen. Wir wünschen Dir dabei viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8566