Kurvendiskussion Schritt für Schritt erklärt

Mathematik > Funktionen
Kurvendiskussion Schritt für Schritt erklärt! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit der sogenannten Kurvendiskussion. Zu jeder beliebigen Funktion kann eine solche Kurvendiskussion durchgeführt werden. Die Ergebnisse der Kurvendiskussionen geben dann Informationen über den Verlauf und das Aussehen des Graphen

Um eine Kurvendiskussion durchzuführen, können folgende Schritte der Reihe nach abgearbeitet werden:

Schritte bei einer Kurvendiskussion

Methode

  1. Definitionsmenge
  2. Schnittpunkte mit den Koordinatenachsen
  3. Symmetrieverhalten
  4. Verhalten im Unendlichen
  5. Monotonie und Extremwerte
  6. Krümmung und Wendepunkte
  7. Wertebereich und Graph

Die verschiedenen Schritte und auch die Reihenfolge können je nach Schulbuch variieren. Wir schauen uns diese Schritte nun genauer an:

1. Definitionsmenge

Die Definitionsmenge besteht aus allen Zahlen, die für die Variable $x$ eingesetzt werden dürfen.

Beispiel

$f(x) = x^2$

Welche Werte dürfen für $x$ eingesetzt werden? Es darf jede beliebige Zahl eingesetzt werden. $\rightarrow D_f= \mathbb{R} $

Der Definitionsbereich sind die reellen Zahlen.

Bei einem anderen Beispiel wird der Grund, wieso die Definitionsmenge bestimmt werden muss, deutlicher:

$g(x) = \sqrt{x}$

Wir wissen, dass unter der Wurzel keine negative Zahl stehen darf. Daher dürfen für $x$ nur positive Zahlen oder die Zahl Null eingesetzt werden. Mathematisch formuliert bedeutet das: $D_f=\mathbb{R}^+$

2. Schnittpunkte mit den Koordinatenachsen

Die Schnittpunkte mit den Koordinatenachsen sind zum einen die Schnittpunkte mit der x-Achse und zum anderen der Schnittpunkt mit der y-Achse. Bei den x-Werten der Schnittpunkte mit der x-Achse handelt es sich um die Nullstellen. Die Nullstellen berechnen wir, indem die Funktion gleich Null gesetzt wird ($f(x) = 0$) und den Schnittpunkt mit der y-Achse, indem für die Variable Null eingesetzt wird ($x =0$).

Beispiel

Was sind die Schnittpunkte der Funktion $f(x)=x^{2}-3x+2$ mit den Koordinatenachsen?

1. Nullstellen 

$f(x) = 0$

$f(x)=x^{2}-3x+2=0$

Mit der pq-Formel erhalten wir:

$x_1 = 1~~~~\wedge~~~~x_2 = 2$   

Die Schnittpunkte mit der x-Achse sind also $S_{x1}(1\mid0)$ und $S_{x2}(2\mid0)$.

2. Schnittpunkte mit der y-Achse

$x=0$

$f(0)=0^{2}-3\cdot0+2=2$

Der Schnittpunkt mit der y-Achse ist also $S_{y}(0\mid2)$.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

3. Symmetrieverhalten

Eine Funktion kann zur y-Achse symmetrisch sein oder auch zum Ursprung. Um zu überprüfen, ob die Funktion solch ein Symmetrieverhalten zeigt, muss für alle Werte aus dem Definitionsbereich von $f$ Folgendes gelten:

Merke

  • $f(-x) = f(x)$: Die Funktion ist achsensymmetrisch zur y-Achse. 
  • $f(-x) = -f(x)$: Die Funktion ist punktsymmetrisch zum Ursprung.

Schauen wir uns dazu ein Beispiel an:

Beispiel

$f(x) = x^2$

Überprüfen wir, ob die Funktion achsensymmetrisch ist:

$(-x)^2 = x^2$ ist $\textcolor{green}{richtig}$ für alle $x$.
Also gilt $f(-x) = f(x)\rightarrow f$ ist achsensymmetrisch zur y-Achse.

Ist die Funktion auch punktsymmetrisch?

$x^2= - (x^2)$ ist zum Beispiel $\textcolor{red}{falsch}$ für $x = 1$.
Also gilt nicht $f(-x) = -f(x)\rightarrow f$ ist nicht punktsymmetrisch zum Ursprung.

4. Verhalten im Unendlichen

Um das Verhalten im Unendlichen zu bestimmen, stellen wir uns die Funktion für eine sehr große und sehr kleine Variable vor.

Mathematisch wird dies dann so geschrieben: $\lim\limits_{x \to \infty} f(x)$ und $\lim\limits_{x \to -\infty}f(x)$

Beispiel

Betrachten wir das gleiche Beispiel wie gerade: $f(x) = x^2$

Je größer $x$ wird, desto größer wird der Funktionswert. Das bedeutet, dass die Funktionswerte für größer werdende x-Werte gegen plus unendlich laufen.

$\lim\limits_{x \to \infty}x^2=\infty $

Je kleiner $x$ wird, desto größer wird der Funktionswert. Die Funktionswerte gehen auch für kleiner werdende x-Werte gegen positiv unendlich.

$\lim\limits_{x \to -\infty}x^2=\infty $

5. Monotonie und Extremwerte

Das Monotonieverhalten sagt etwas über die Steigung der Funktion aus. An den Extremstellen ändert sich das Steigungsverhalten entweder von steigend zu fallend oder von fallend zu steigend.

Um einen Extrempunkt zu bestimmen, müssen wir die erste Ableitung bilden und diese gleich null setzen. Die mit der ersten Ableitung berechneten x-Werte können dann in die Ausgangsfunktion eingesetzt werden, um die y-Koordinaten der Extrempunkte zu bestimmen.

Um zu bestimmen ob ein Hoch- oder Tiefpunkt vorliegt, bilden wir die zweite Ableitung und setzen den x-Wert ein:

Methode

Ist das Ergebnis größer Null liegt ein Tiefpunkt vor. Ist das Ergebnis kleiner null liegt ein Hochpunkt vor.

6. Krümmung und Wendepunkte

Eine Funktion kann entweder links- oder rechtsgekrümmt sein. Der Wendepunkt ist der Punkt, an dem sich das Krümmungsverhalten ändert.

Um den Wendepunkt zu bestimmen, muss die zweite Ableitung gleich null gesetzt werden. Die mit der zweiten Ableitung berechneten x-Werte können dann in die Ausgangsfunktion eingesetzt werden, um die y-Koordinaten der Wendepunkte zu bestimmen.

Methode

Wenn $f''(x) > 0$ ist, ist die Funktion linksgekrümmt.

Ist $f''(x) < 0$, ist die Funktion rechtsgekrümmt.

7. Wertebereich und Graph

Im letzten Schritt bestimmen wir den Wertebereich. Das bedeutet, dass wir die Werte bestimmen, die der Funktionswert annehmen kann. Dann können wir mit allen berechneten Punkten, den Graph skizzieren. Für $f(x)=x^2$ bedeutet es, dass die y-Werte alle positiven reellen Zahlen sowie die Zahl Null annehmen können. Mathematisch formuliert bedeutet das: $W_f=\mathbb{R}^+$

Nun hast du eine Übersicht über die Vorgehensweise einer Kurvendiskussion bekommen. Als kleine Hilfe stellen wir dir eine Übersichtsseite zum Herunterladen zur Verfügung. Hier kannst du dir eine Beispielaufgabe anschauen. Außerdem kannst du dein Wissen mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

Video: Fabian Serwitzki

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie berechnet man einen Wendepunkt?

Teste dein Wissen!

Kennzeichne die Schritte der Kurvendiskussion, die fehlerhaft sind.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussagen über die Funktion $f(x)=x^3$ sind wahr?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
31.05.2025
Super nettes Personal.. Hab schon das zweite Kind angemeldet, sie gehen auf die Bedürfnisse der Kinder ein.. Termine sind einfach und persönlich bzw telefonisch sehr gut zu organisieren. Fr. Wagner in Rosenheim ist wirklich sehr bemüht und in allem zu helfen. Kann ich nur empfehlen!!!
31.05.2025
Meinem Sohn hat es sehr gut geholfen, das er in mathe das Thema dank ihres Lehrers kapiert hat. Vielen Dank
18.05.2025
Alles zu bester Zufriedenheit!

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7752