Mathematik > Funktionen

Kurvendiskussion Schritt für Schritt erklärt

Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit der sogenannten Kurvendiskussion. Zu jeder beliebigen Funktion kann eine solche Kurvendiskussion durchgeführt werden. Die Ergebnisse der Kurvendiskussionen geben dann Informationen über den Verlauf und das Aussehen des Graphen

Um eine Kurvendiskussion durchzuführen, können folgende Schritte der Reihe nach abgearbeitet werden:

Schritte bei einer Kurvendiskussion

Methode

Methode

Hier klicken zum Ausklappen
  1. Definitionsmenge
  2. Schnittpunkte mit den Koordinatenachsen
  3. Symmetrieverhalten
  4. Verhalten im Unendlichen
  5. Monotonie und Extremwerte
  6. Krümmung und Wendepunkte
  7. Wertebereich und Graph

Die verschiedenen Schritte und auch die Reihenfolge können je nach Schulbuch variieren. Wir schauen uns diese Schritte nun genauer an:

1. Definitionsmenge

Die Definitionsmenge besteht aus allen Zahlen, die für die Variable $x$ eingesetzt werden dürfen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = x^2$

Welche Werte dürfen für $x$ eingesetzt werden? Es darf jede beliebige Zahl eingesetzt werden. $\rightarrow D_f= \mathbb{R} $

Der Definitionsbereich sind die reellen Zahlen.

Bei einem anderen Beispiel wird der Grund, wieso die Definitionsmenge bestimmt werden muss, deutlicher:

$g(x) = \sqrt{x}$

Wir wissen, dass unter der Wurzel keine negative Zahl stehen darf. Daher dürfen für $x$ nur positive Zahlen oder die Zahl Null eingesetzt werden. Mathematisch formuliert bedeutet das: $D_f=\mathbb{R}^+$

2. Schnittpunkte mit den Koordinatenachsen

Die Schnittpunkte mit den Koordinatenachsen sind zum einen die Schnittpunkte mit der x-Achse und zum anderen der Schnittpunkt mit der y-Achse. Bei den x-Werten der Schnittpunkte mit der x-Achse handelt es sich um die Nullstellen. Die Nullstellen berechnen wir, indem die Funktion gleich Null gesetzt wird ($f(x) = 0$) und den Schnittpunkt mit der y-Achse, indem für die Variable Null eingesetzt wird ($x =0$).

Beispiel

Beispiel

Hier klicken zum Ausklappen

Was sind die Schnittpunkte der Funktion $f(x)=x^{2}-3x+2$ mit den Koordinatenachsen?

1. Nullstellen 

$f(x) = 0$

$f(x)=x^{2}-3x+2=0$

Mit der pq-Formel erhalten wir:

$x_1 = 1~~~~\wedge~~~~x_2 = 2$   

Die Schnittpunkte mit der x-Achse sind also $S_{x1}(1\mid0)$ und $S_{x2}(2\mid0)$.

2. Schnittpunkte mit der y-Achse

$x=0$

$f(0)=0^{2}-3\cdot0+2=2$

Der Schnittpunkt mit der y-Achse ist also $S_{y}(0\mid2)$.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

3. Symmetrieverhalten

Eine Funktion kann zur y-Achse symmetrisch sein oder auch zum Ursprung. Um zu überprüfen, ob die Funktion solch ein Symmetrieverhalten zeigt, muss für alle Werte aus dem Definitionsbereich von $f$ Folgendes gelten:

Merke

Merke

Hier klicken zum Ausklappen
  • $f(-x) = f(x)$: Die Funktion ist achsensymmetrisch zur y-Achse. 
  • $f(-x) = -f(x)$: Die Funktion ist punktsymmetrisch zum Ursprung.

Schauen wir uns dazu ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = x^2$

Überprüfen wir, ob die Funktion achsensymmetrisch ist:

$(-x)^2 = x^2$ ist $\textcolor{green}{richtig}$ für alle $x$.
Also gilt $f(-x) = f(x)\rightarrow f$ ist achsensymmetrisch zur y-Achse.

Ist die Funktion auch punktsymmetrisch?

$x^2= - (x^2)$ ist zum Beispiel $\textcolor{red}{falsch}$ für $x = 1$.
Also gilt nicht $f(-x) = -f(x)\rightarrow f$ ist nicht punktsymmetrisch zum Ursprung.

4. Verhalten im Unendlichen

Um das Verhalten im Unendlichen zu bestimmen, stellen wir uns die Funktion für eine sehr große und sehr kleine Variable vor.

Mathematisch wird dies dann so geschrieben: $\lim\limits_{x \to \infty} f(x)$ und $\lim\limits_{x \to -\infty}f(x)$

Beispiel

Beispiel

Hier klicken zum Ausklappen

Betrachten wir das gleiche Beispiel wie gerade: $f(x) = x^2$

Je größer $x$ wird, desto größer wird der Funktionswert. Das bedeutet, dass die Funktionswerte für größer werdende x-Werte gegen plus unendlich laufen.

$\lim\limits_{x \to \infty}x^2=\infty $

Je kleiner $x$ wird, desto größer wird der Funktionswert. Die Funktionswerte gehen auch für kleiner werdende x-Werte gegen positiv unendlich.

$\lim\limits_{x \to -\infty}x^2=\infty $

5. Monotonie und Extremwerte

Das Monotonieverhalten sagt etwas über die Steigung der Funktion aus. An den Extremstellen ändert sich das Steigungsverhalten entweder von steigend zu fallend oder von fallend zu steigend.

Um einen Extrempunkt zu bestimmen, müssen wir die erste Ableitung bilden und diese gleich null setzen. Die mit der ersten Ableitung berechneten x-Werte können dann in die Ausgangsfunktion eingesetzt werden, um die y-Koordinaten der Extrempunkte zu bestimmen.

Um zu bestimmen ob ein Hoch- oder Tiefpunkt vorliegt, bilden wir die zweite Ableitung und setzen den x-Wert ein:

Methode

Methode

Hier klicken zum Ausklappen

Ist das Ergebnis größer Null liegt ein Tiefpunkt vor. Ist das Ergebnis kleiner null liegt ein Hochpunkt vor.

6. Krümmung und Wendepunkte

Eine Funktion kann entweder links- oder rechtsgekrümmt sein. Der Wendepunkt ist der Punkt, an dem sich das Krümmungsverhalten ändert.

Um den Wendepunkt zu bestimmen, muss die zweite Ableitung gleich null gesetzt werden. Die mit der zweiten Ableitung berechneten x-Werte können dann in die Ausgangsfunktion eingesetzt werden, um die y-Koordinaten der Wendepunkte zu bestimmen.

Methode

Methode

Hier klicken zum Ausklappen

Wenn $f''(x) > 0$ ist, ist die Funktion linksgekrümmt.

Ist $f''(x) < 0$, ist die Funktion rechtsgekrümmt.

7. Wertebereich und Graph

Im letzten Schritt bestimmen wir den Wertebereich. Das bedeutet, dass wir die Werte bestimmen, die der Funktionswert annehmen kann. Dann können wir mit allen berechneten Punkten, den Graph skizzieren. Für $f(x)=x^2$ bedeutet es, dass die y-Werte alle positiven reellen Zahlen sowie die Zahl Null annehmen können. Mathematisch formuliert bedeutet das: $W_f=\mathbb{R}^+$

Nun hast du eine Übersicht über die Vorgehensweise einer Kurvendiskussion bekommen. Als kleine Hilfe stellen wir dir eine Übersichtsseite zum Herunterladen zur Verfügung. Hier kannst du dir eine Beispielaufgabe anschauen. Außerdem kannst du dein Wissen mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

Video: Fabian Serwitzki

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie berechnet man einen Wendepunkt?

Teste dein Wissen!

Kennzeichne die Schritte der Kurvendiskussion, die fehlerhaft sind.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussagen über die Funktion $f(x)=x^3$ sind wahr?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Corinna O., vom 2019-10-17
alles gut
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7752