Suche
Kontakt
>
Mathematik > Funktionen

Lineares Wachstum und lineare Abnahme

Lineares Wachstum und lineare Abnahme! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Text erklären wir dir, was lineares Wachstum bzw. lineare Abnahme ist und was du damit berechnen kannst. Du findest hier auch je ein Zahlenbeispiel zu den beiden Themen.

Definition

Es gibt verschiedene Arten von Wachstum und Zerfall. Das lineare Wachstum und die lineare Abnahme haben eine konstante Änderungsrate. Das bedeutet, dass in gleichen Abständen die gleiche Menge dazu kommt oder weggenommen wird. Daraus ergibt sich, dass der Funktionsgraph eine Gerade ist.

funktion_linearer_wachstum

Abbildung: lineares Wachstum

Die Funktionsgleichung ist allgemein:

Methode

$N(t) = N_0 + a\cdot t$

Dabei ist:

$N(t)$:Wert zum Zeitpunkt $t$
$N_0$:Anfangswert zum Zeitpunkt $t=0$
$a$:Änderungsrate
$t$:Variable, meist Zeit
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Lineares Wachstum

Ein Beispiel für lineares Wachstum ist das gleichmäßige Befüllen eines Gefäßes.

Die Änderungsrate muss beim linearen Wachstum positiv sein:

$ a>0$

Der Anfangswert $N_0$ wächst pro Zeiteinheit um den Wert der Änderungsrate $a$. Das sieht man weiter oben in der Grafik. Wenn zum Beispiel der Anfangswert $N_0 = 3$ beträgt und mit jeder Zeiteinheit $a = 1,75$ dazu kommen, dann lautet eine mögliche Gleichung: $N(t) = N_0 + a \cdot t = 3 + 1,75 \cdot t$

Schauen wir uns ein Beispiel an:

Beispiel

Ein Schwimmbecken wird mit Wasser gefüllt. Am Anfang ist das Becken leer. Pro Minute laufen nun $20~l$ Wasser in das Becken. Das Schwimmbecken fasst insgesamt $54.000~l$.

Fragen:

1. Wie viel Wasser befindet sich nach einer Stunde in dem Becken?

2. Nach welcher Zeit ist das Becken vollständig mit Wasser gefüllt?

Antworten:

Als erstes müssen wir die Funktionsgleichung aufstellen:

$N(t) = 0 + 20  \cdot t $

Dabei ist $t$ die Zeit in Minuten und $N(t)$ die Wassermenge in Litern.
Mit dieser Gleichung kann nun die Wassermenge zu jedem beliebigen Zeitpunkt berechnet werden. Mit dieser Gleichung kann auch berechnet werden, wie lange es dauert, bis eine bestimmte Wassermenge in dem Becken ist.

1. $N(60) = 20  \cdot 60 = 1200$

Nach $60$ Minuten sind $1.200~ l$ Wasser in dem Schwimmbecken.

2. $N(t) $ muss $54.000~l$ betragen:

$54000 = 20  \cdot t $

$t =\frac{54000}{20} = 2700~min$

Nach $2.700$ Minuten (45 Stunden) ist das Becken vollständig mit Wasser gefüllt.

Lineare Abnahme

Bei der linearen Abnahme sinkt der Wert konstant. Als Beispiel könnte man das gleichmäßige Abfließen von Wasser aus einer Badewanne nennen.

Die Änderungsrate bei der linearen Abnahme muss negativ sein.

Von dem Anfangswert $N_0$ wird dann $t$-mal der Wert von $a$ abgezogen.

Schauen wir uns ein Beispiel an:

Beispiel

Anka hat $50$ € zu Weihnachten geschenkt bekommen. Sie liebt Rosinenschnecken und kauft sich daher von dem Geld jede Woche eine. Eine Rosinenschnecke kostet $2$ €.

Fragen:

1. Nach wie vielen Monaten ist das Geld aufgebraucht? 

2. Wie viel Geld ist nach acht Wochen noch übrig?

Antworten:

Wir müssen als erstes die Gleichung für den Sachverhalt aufstellen. Der Anfangswert beträgt $50$ € und die Änderungsrate ist $-2$ € je Woche:

$N(t) = 50 -2 \cdot t$

Dabei ist $t$ die Zeit und wird in Wochen angegeben und $N(t)$ ist der Geldbetrag in Euro.

1. Wenn das Geld aufgebraucht ist, gilt: $N(t) = 0$
Wir ersetzen also $N(t)$ durch $0$ und formen die Gleichung dann nach $t$ um:

$0 = 50 - 2\cdot t$

$t = \frac{-50}{-2} = 25$

Nach $25$ Wochen, also nach ca. $6$ Monaten, ist das Geld aufgebraucht.

2. Um den Geldbetrag nach acht Wochen zu ermitteln, müssen wir für $t$ den Wert $8$ einsetzen:

$N(8) = 50 - 2\cdot 8 = 34 $

Nach acht Wochen sind noch $34$ € übrig.

In den Übungsaufgaben kannst du dich prüfen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Klaus hat zu Weihnachten 30 € von seinen Großeltern bekommen. Er hat sich vorgenommen das Geld zu sparen und jeden Monat weitere 5 € in seine Spardose zu werfen. Welche Funktionsgleichung beschreibt den Sachverhalt?

Teste dein Wissen!

Hans und seine Familie machen Urlaub auf Ibiza. Sie buchen einen Leihwagen. Die Grundgebühr beträgt 25 € und der Preis pro gefahrenem Kilometer beträgt 0,50 €, inklusive Sprit.
Hans hat für das Auto 100 € eingeplant. Nun fragt er sich, wie viele Kilometer er damit fahren kann. Kannst du ihm helfen?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wurde den Symbolen die korrekte Bedeutung zugeordnet? Markiere die richtige(n) Antwort(en)!

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Tobias ist ein Jahr alt und 70 cm groß. Jeden Monat wächst er ca. 2 cm bis er 3 Jahre alt ist, dann verändert sich das Wachstum. Wie kann sein Wachstum mit Hilfe einer Funktionsgleichung dargestellt werden und wie groß ist Tobias, wenn er 3 Jahre alt ist?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7782