Mathematik > Funktionen

Lineares Wachstum und lineare Abnahme

Inhaltsverzeichnis:

In diesem Text erklären wir dir, was lineares Wachstum bzw. lineare Abnahme ist und was du damit berechnen kannst. Du findest hier auch je ein Zahlenbeispiel zu den beiden Themen.

Definition

Es gibt verschiedene Arten von Wachstum und Zerfall. Das lineare Wachstum und die lineare Abnahme haben eine konstante Änderungsrate. Das bedeutet, dass in gleichen Abständen die gleiche Menge dazu kommt oder weggenommen wird. Daraus ergibt sich, dass der Funktionsgraph eine Gerade ist.

funktion_linearer_wachstum
Abbildung: lineares Wachstum

Die Funktionsgleichung ist allgemein:

Methode

Methode

Hier klicken zum Ausklappen

$N(t) = a\cdot t + N_0$

Dabei ist:

$N(t)$:Wert zum Zeitpunk $t$
$a$:Änderungsrate
$t$:Variable, meist Zeit
$N_0$:Anfangswert zum Zeitpunkt $t=0$
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Lineares Wachstum

Ein Beispiel für lineares Wachstum ist das gleichmäßige Befüllen eines Gefäßes.

Die Änderungsrate muss beim linearen Wachstum positiv sein:

$ a>0$

Der Anfangswert wächst pro Zeiteinheit um den Wert der Änderungsrate. So kann zum Beispiel, wie bei der oben abgebildeten Funktion, der Anfangswert $3$ sein und mit jeder Zeiteinheit kommt $1,75$ dazu. Daraus ergibt sich die Funktionsgleichung: $N(t) = 3 + 1,75 \cdot t$

Schauen wir uns ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ein Schwimmbecken wird mit Wasser gefüllt. Am Anfang ist das Becken leer. Pro Minute laufen nun $20~l$ Wasser in das Becken. Das Schwimmbecken fasst insgesamt $54.000~l$.

Fragen:

1. Wie viel Wasser befindet sich nach einer Stunde in dem Becken?

2. Nach welcher Zeit ist das Becken vollständig mit Wasser gefüllt?

Antworten:

Als erstes müssen wir die Funktionsgleichung aufstellen:

$N(t) = 0 + 20  \cdot t $

Dabei ist $t$ die Zeit in Minuten und $N(t)$ die Wassermenge in Litern.
Mit dieser Gleichung kann nun die Wassermenge zu jedem beliebigen Zeitpunkt berechnet werden. Mit dieser Gleichung kann auch berechnet werden, wie lange es dauert, bis eine bestimmte Wassermenge in dem Becken ist.

1. $N(60) = 20  \cdot 60 = 1200$

Nach $60$ Minuten sind $1.200~ l$ Wasser in dem Schwimmbecken.

2. $N(t) $ muss $54.000~l$ betragen:

$54000 = 20  \cdot t $

$t =\frac{54000}{20} = 2700~min$

Nach $2.700$ Minuten (45 Stunden) ist das Becken vollständig mit Wasser gefüllt.

Lineare Abnahme

Bei der linearen Abnahme sinkt der Wert konstant. Als Beispiel könnte man das gleichmäßige Abfließen von Wasser aus einer Badewanne nennen.

Die Änderungsrate bei der linearen Abnahme muss negativ sein:

$\rightarrow -a$

Von dem Anfangswert wird dann pro Zeiteinheit ($t$-Wert) ein bestimmter Wert abgezogen.

Schauen wir uns ein Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Anka hat $50$ € zu Weihnachten geschenkt bekommen. Sie liebt Rosinenschnecken und kauft sich daher von dem Geld jede Woche eine. Eine Rosinenschnecke kostet $2$ €.

Fragen:

1. Nach wie vielen Monaten ist das Geld aufgebraucht? 

2. Wie viel Geld ist nach acht Wochen noch übrig?

Antworten:

Wir müssen als erstes die Gleichung für den Sachverhalt aufstellen. Der Anfangswert beträgt $50$ € und die Änderungsrate ist $-2$ € je Woche:

$N(t) = 50 -2 \cdot t$

Dabei ist $t$ die Zeit und wird in Wochen angegeben und $N(t)$ ist der Geldbetrag in Euro.

1. Wenn das Geld aufgebraucht ist, gilt: $N(t) = 0$
Wir ersetzen also $N(t)$ durch $0$ und formen die Gleichung dann nach $t$ um:

$0 = 50 - 2\cdot t$

$t = \frac{-50}{-2} = 25$

Nach $25$ Wochen, also nach ca. $6$ Monaten, ist das Geld aufgebraucht.

2. Um den Geldbetrag nach acht Wochen zu ermitteln, müssen wir für $t$ den Wert $8$ einsetzen:

$N(8) = 50 - 2\cdot 8 = 34 $

Nach acht Wochen sind noch $34$ € übrig.

In den Übungsaufgaben kannst du dich prüfen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Klaus hat zu Weihnachten 30 € von seinen Großeltern bekommen. Er hat sich vorgenommen das Geld zu sparen und jeden Monat weitere 5 € in seine Spardose zu werfen. Welche Funktionsgleichung beschreibt den Sachverhalt?

Teste dein Wissen!

Hans und seine Familie machen Urlaub auf Ibiza. Sie buchen einen Leihwagen. Die Grundgebühr beträgt 25 € und der Preis pro gefahrenem Kilometer beträgt 0,50 €, inklusive Sprit.
Hans hat für das Auto 100 € eingeplant. Nun fragt er sich, wie viele Kilometer er damit fahren kann. Kannst du ihm helfen?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wurde den Symbolen die korrekte Bedeutung zugeordnet? Markiere die richtige(n) Antwort(en)!

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Tobias ist ein Jahr alt und 70 cm groß. Jeden Monat wächst er ca. 2 cm bis er 3 Jahre alt ist, dann verändert sich das Wachstum. Wie kann sein Wachstum mit Hilfe einer Funktionsgleichung dargestellt werden und wie groß ist Tobias, wenn er 3 Jahre alt ist?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7782