Online Lernen | Mathematik Aufgaben | Funktionen Trigonometrische Funktionen Sinusfunktion - Streckung, Stauchung und Periode

Sinusfunktion - Streckung, Stauchung und Periode

In diesem Lerntext werden wir dir die verschiedenen Begrifflichkeiten und Eigenschaften der allgemeinen Sinusfunktion erklären. Dabei gehen wir auf die verschiedenen Bedeutungen der Variablen der allgemeinen Sinusfunktion genauer ein und erklären dir diese.

Die allgemeine Sinusfunktion

Die allgemeine Sinusfunktion besteht, wie der Name vermuten lässt, aus dem "Faktor" Sinus, welcher im Bezug zur Variablen steht. Dieser Faktor kann jedoch durch verschiedenste Variablen verändert werden. Nachfolgend erklären wir dir die beiden Variablen $a$ und $b$ der allgemeinen Sinusfunktion:

$y\;=\;\textcolor{orange}{a}\;\cdot \sin(\textcolor{green}{b}\;\cdot x)$

Streckungs- und Stauchungsfaktor $\textcolor{orange}{a}$

Die Variable $\textcolor{orange}{a}$ beschreibt den Streckungsfaktor der Funktion. Dieser lässt die Funktion höher verlaufen, der Ausschlag in y-Richtung wird größer. Dieser Ausschlag wird in der Mathematik Amplitude genannt. Je größer der Streckungsfaktor, desto höher verläuft die Funktion und desto größer ist die Amplitude der Funktion:

Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden. Der Streckungsfaktor der orangenen Funktion ist dabei $3$, bei der blauen Funktion $1$.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

$\textcolor{orange}{a}$ ist zwar, wie du jetzt weißt, der Streckungsfaktor, ABER die Sinusfunktion kann auch gestaucht werden. Du kannst dir hierbei merken:

$\textcolor{orange}a>1$ (a größer 1) $\rightarrow $ Funktion ist gestreckt.

$0<\textcolor{orange}a<1$ (a liegt zwischen 0 und 1) $\rightarrow $ Funktion ist gestaucht.

Durch die Veränderung des Streckungsfaktors ändert sich auch der Wertebereich der Funktion.

Merke

Merke

Hier klicken zum Ausklappen

Die Amplitude der Sinusfunktion wird "der größte Ausschlag nach oben und unten" genannt.

Die Variable $a$ der allgemeinen Sinusfunktion bezeichnet den Streckungsfaktor. Dieser verändert die Amplitude und damit die Wertemenge.

Periode $\textcolor{green}{b}$ der Sinusfunktion

Die Sinusfunktion verläuft periodisch, das heißt, dass sich die einzelnen Abschnitte der Funktion wieder und wieder wiederholen. Die Periode der Sinusfunktion wird hierbei der sich immer wieder wiederholende Abschnitt genannt. Wenn wir den Faktor $\textcolor{green}{b}$ der Funktion verändern, ändert sich auch die Länge der Periode. Bei größerem Faktor $\textcolor{green}{b}$ wird die Periode der Funktion kürzer, bei kleinerem Faktor $\textcolor{green}{b}$ größer, bis hin zur Spiegelung der Funktion bei negativem Vorzeichen.

In der folgenden Abbildung haben wir die $\textcolor{blue}{blaue \;Sinusfunktion}$ unverändert gelassen, bei der $\textcolor{green}{grünen\; Funktion}$ den Faktor auf $0,5$ gesetzt und bei der $\textcolor{orange}{orangenen \;Funktion}$ den Faktor $2$ bzw. $-2$ gewählt. Die Funktion mit dem negativen Faktor haben wir zur besseren Übersichtlichkeit nach oben verschoben:

Verschiedene Perioden von Sinusfunktionen
Verschiedene Perioden von Sinusfunktionen

Merke

Merke

Hier klicken zum Ausklappen

Die Periode beschreibt den sich wiederholenden Abschnitt der Sinusfunktion. Er kann verlängert, verkürzt oder sogar gespiegelt werden, je nachdem wie der Faktor $\textcolor{green}{b}$ der Funktion aussieht.

Ruhelage der Sinusfunktion

Ein weiterer Fachbegriff bei Sinusfunktionen beschreibt die Ruhelage. Diese stellt den Mittelwert zwischen Höchstpunkt und Tiefpunkt der Funktion dar. Sie wird als Gerade dargestellt. Bei keiner Verschiebung der Funktion in Richtung der y-Achse bildet die x-Achse die Ruhelage. 

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg beim Lösen der Aufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7780