Mathematik > Funktionen

Sinusfunktion - Streckung, Stauchung und Periode

Inhaltsverzeichnis:

In diesem Lerntext werden wir dir die verschiedenen Begrifflichkeiten und Eigenschaften der allgemeinen Sinusfunktion erklären. Dabei gehen wir auf die verschiedenen Bedeutungen der Variablen der allgemeinen Sinusfunktion genauer ein und erklären dir diese.

Die allgemeine Sinusfunktion

Die Sinusfunktion ordnet jedem Winkel eine Streckenlänge zu. Wie das passiert, kannst Du in dem Lerntext Sinusfunktion und ihre Eigenschaften nachlesen. Nachfolgend erklären wir dir die Bedeutung der Variablen a und b in der Funktion:

$y\;=\;\textcolor{orange}{a}\;\cdot \sin(\textcolor{green}{b}\;\cdot x)$

Streckungsfaktor $\textcolor{orange}{a}$

Die reelle Zahl $\textcolor{orange}{a}$, die in dieser Funktion als Streckungsfaktor auftritt, wirkt aich auf verschiedene Weisen auf den Verlauf der Funktion $y=sin   \textcolor{green}{b}x$ aus. Der Streckungsfaktor $\textcolor{orange}{a}$ streckt, staucht oder spiegelt. Wie sich dieser Faktor auswirkt, zeigen wir dir in der folgenden Abbildung:

Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Wir sehen an den verschiedenen Kosinusfunktionen die Wirkungen des Streckfaktors $a$ auf die Funktion $f(x)=sin⁡ x$.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Ist $\textcolor{orange}{a}$ größer als 1 oder kleiner als -1, dann bewirkt $\textcolor{orange}{a}$ eine Streckung.

Liegt $\textcolor{orange}a$ zwischen -1 und 1, dann bewirkt $\textcolor{orange}a$ eine Stauchung.

Ist $\textcolor{orange}a$ negativ, so bewirkt zusätzlich eine Spiegelung an der x-Achse

Durch die Veränderung des Streckungsfaktors ändert sich auch der Wertebereich der Funktion.

Merke

Merke

Hier klicken zum Ausklappen

Die Amplitude der Sinusfunktion wird "der größte Ausschlag nach oben und unten" genannt.

Die Variable $a$ bezeichnet den Streckungsfaktor. Dieser verändert die Amplitude und damit die Wertemenge.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Periode $\textcolor{green}{p}$ der Sinusfunktion

Die Sinusfunktion verläuft periodisch, das heißt, dass sich die einzelnen Abschnitte der Funktion wieder und wieder wiederholen. Die Periode der Sinusfunktion wird hierbei der sich immer wieder wiederholende Abschnitt genannt. Wenn wir den Faktor $\textcolor{green}{b}$ der Funktion verändern, ändert sich auch die Länge der kleinsten Periode. Bei größerem Faktor $\textcolor{green}{b}$ wird die kleinste Periode der Funktion kürzer, bei kleinerem Faktor $\textcolor{green}{b}$ größer, bis hin zur Spiegelung der Funktion bei negativem Vorzeichen.

In der folgenden Abbildung haben wir die $\textcolor{blue}{blaue \;Sinusfunktion}$ unverändert gelassen, bei der $\textcolor{green}{grünen\; Funktion}$ den Faktor auf $0,5$ gesetzt und bei der $\textcolor{orange}{orangenen \;Funktion}$ den Faktor $2$ bzw. $-2$ gewählt. Die Funktion mit dem negativen Faktor haben wir zur besseren Übersichtlichkeit nach oben verschoben. Die kleinste Periode berechnet man mit der Formel $p = | \frac{2 \cdot \pi}{b} | $

Verschiedene Perioden von Sinusfunktionen
Verschiedene Perioden von Sinusfunktionen

Merke

Merke

Hier klicken zum Ausklappen

Die Periode beschreibt den sich wiederholenden Abschnitt der Sinusfunktion. Er kann verlängert, verkürzt oder sogar gespiegelt werden, je nachdem wie der Faktor $\textcolor{green}{b}$ der Funktion aussieht.

Als allgemeine Gleichung einer Sinusfunktion wird oft $ f(x) = a sin (bx + c) + d$ bezeichnet.

Reelle Zahlen $a, b, c$ und $d$ haben folgende Effekte:

  • $a$ streckt entlang der $y$-Achse
  • $b$ beeinflusst die Periode
  • $c$ verschiebt entlang der $x$-Achse
  • $d$ verschiebt entlang der $y$-Achse

Ruhelage der Sinusfunktion

Ein weiterer Fachbegriff bei Sinusfunktionen beschreibt die Ruhelage. Diese stellt den Mittelwert zwischen Höchstpunkt und Tiefpunkt der Funktion dar. Sie wird als Gerade dargestellt. Bei keiner Verschiebung der Funktion in Richtung der y-Achse bildet die x-Achse die Ruhelage. 

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg beim Lösen der Aufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was bezeichnet die Periode in der Mathematik?

Teste dein Wissen!

Was bezeichnet die Amplitude bei einer Sinusfunktion?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die Ruhelage bei einer Sinusfunktion?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher der Variablen der allgemeinen Sinusfunktion bezeichnet den Streckungsfaktor?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7780