Mathematik > Funktionen

Wie verschiebt man eine Normalparabel?

Inhaltsverzeichnis:

Der Graph der Funktion $f(x)=x^2$ wird Normalparabel genannt. Der Graph dieser Funktion kann in einem Koordinatensystem in 4 verschiedene Richtungen verschoben werden: Nach oben, nach unten, nach links und nach rechts.

Übersicht

Merke

Merke

Hier klicken zum Ausklappen

Für beliebige positive reelle Zahlen $a$, $b$, $c$ und $d$ gilt:

Verschiebung in Richtung der y-Achse

nach $\textcolor{red}{oben}$ : $f(x) = x^2 \textcolor{red}{+ a} \rightarrow$ Verschiebung des Graphen um a nach oben

nach $\textcolor{red}{unten} $ : $f(x) = x^2 \textcolor{red}{-b} \rightarrow$ Verschiebung des Graphen um b nach unten

Verschiebung in Richtung der x-Achse

nach $\textcolor{red}{rechts} $ : $f(x) = (x \textcolor{red}{-c})^2 \rightarrow$ Verschiebung des Graphen um c nach rechts

nach $\textcolor{red}{links} $ : $f(x) = (x \textcolor{red}{+d})^2 \rightarrow$ Verschiebung des Graphen um d nach links

Verschiebung nach oben

Die Normalparabel wird nach oben verschoben, indem zu $x^2$ eine positive Zahl addiert wird. Der Graph von $g(x)=x^2+10$ ist gegenüber dem Graphen von $f(x)=x^2$ um $10$ Einheiten nach oben verschoben.

Normalparabel nach oben verschoben um 10

Abbildung: Normalparabel um $10$ nach oben verschoben

Die Normalparabel wurde um $10$ Einheiten in Richtung der y-Achse nach oben verschoben.

Verschiebung nach unten

Die Normalparabel wird nach unten verschoben, indem zu $x^2$ ein negativer Wert addiert wird. Der Graph von $g(x)=x^2-3$ ist gegenüber dem Graphen von $f(x)=x^2$ um $3$ Einheiten nach unten verschoben.

Normalparabel nach unten verschoben um 3

Abbildung: Normalparabel um $3$ nach unten verschoben

Die Normalparabel wurde um $3$ Einheiten in Richtung der y-Achse nach unten verschoben.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Verschiebung nach rechts

Der Graph der Normalparabel wird nach rechts verschoben, indem von $x$ eine positive Zahl subtrahiert wird und die Differenz dann quadriert wird.
Das ist zum Beispiel $f(x)=(x-3)^2$

Normalparabel nach rechts verschoben um 3

Abbildung: Normalparabel um $3$ nach rechts verschoben

Also bewirkt der negative Wert, der mit dem $x$ in der Klammer steht, dass die Parabel auf der x-Achse nach rechts, also in den positiven Bereich verschoben wird.

Merke dir einfach: Wenn die Zahl, die dem $x$ in der Klammer folgt, negativ ist, dann wird die Parabel nach rechts, also in den positiven Bereich verschoben.

Hier ist es genau umgekehrt im Vergleich zur Verschiebung nach rechts: Der Graph der Normalparabel wird nach links verschoben, indem zu $x$ eine positive Zahl addiert wird und die Summe dann quadriert wird.
Das ist zum Beispiel: $f(x) = (x+5)^2$

Normalparabel nach links verschoben um 5

Abbildung: Normalparabel um $5$ nach links verschoben

Also bewirkt der positive Wert, der mit dem $x$ in der Klammer steht, dass die Parabel auf der x-Achse nach links, also in den negativen Bereich verschoben wird.

Merke dir einfach: Wenn die Zahl, die dem $x$ in der Klammer folgt, positiv ist, dann wird die Parabel nach links, also in den negativen Bereich verschoben.

Beides zusammen

Natürlich können wir den Graphen zum Beispiel auch nach unten und gleichzeitig nach rechts verschieben.

Sagen wir der Graph soll um $3$ nach unten und um $1$ nach rechts verschoben werden. Wie muss unsere Funktion dann aussehen?

Vertiefung

Hier klicken zum Ausklappen

Lösung

Wir gehen schrittweise vor:
Zuerst verschieben wir den Graphen um $3$ nach unten $\rightarrow f(x) = x^2-3$.
Dann noch um $1$ nach rechts $\rightarrow f(x) = (x-1)^2-3$.
Jetzt haben wir unseren Graphen und der sieht gezeichnet so aus:

Normalparabel um 3 nach unten und 1 nach rechts verschoben

Abbildung: Normalparabel um $3$ nach unten und um $1$ nach rechts verschoben

Die Funktion kann auch in Normalform angegeben werden. Leider können wir daraus die Verschiebung nicht direkt ablesen. Schauen wir uns ein Beispiel an. $f(x) = x^2+2x+5$. Der Graph dazu sieht so aus:

Normalparabel um 1 nach links und 4 nach oben verschoben

Abbildung: Normalparabel um $1$ nach links und um $4$ nach oben verschoben

Das einzige, was wir aus der Funktion direkt ablesen können, ist der y-Achsenabschnitt, also hier $5$. 
Nun können wir die Form natürlich in die Scheitelpunktform umformen.

 $f(x) = x^2+2x+5$
 $f(x) = (x^2+2x+1-1)+5$
 $f(x) = (x^2+2x+1)+5-1$
 $f(x) = (x+1)^2+4$

Jetzt können wir die Verschiebung ablesen. Der Graph wird um 1 nach links verschoben und um 4 nach oben. Wir können dies nun nochmal mit dem Bild von oben vergleichen; das Bild bestätigt, dass der Scheitelpunkt der Funktion bei S(-1/4) liegt.


Jetzt hast du einen Überblick über die verschiedenen Verschiebungen der Normalparabel bekommen. Dieses Wissen kannst du gerne an unseren Übungen testen. Wir wünschen dir viel Spaß dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Lektor: Frank Kreuzinger

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welcher Graph passt zu der Gleichung?

$f(x) = 5(x-2)^2+3,5$

Teste dein Wissen!

Die Normalparabel wird um 3 nach unten verschoben und um 1 nach rechts.
Wie sieht die Funktionsgleichung der Funktion aus?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

$f(x) = (x-a)^2+b$ 
Wofür sind die Faktoren a und b zuständig? Markiere die korrekte(n) Aussage(n).

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In welche Richtung wird die Normalparabel verschoben?

$f(x) = 0,5\cdot(x+3)-6,5$y

Markiere die richtige Lösung.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

24.11.2022 , von Erdogan H.
Einfach Toppppp !!!!!!
24.11.2022 , von Asiye K.
Sehr hilfreich und kompetent. Noten verbessert.
24.11.2022 , von Ulrich O.
Ich fühle mich gut aufgehoben im Studienkreis. Besonders Frau Ritter gibt sich sehr viel Mühe alles zur Zufriedenheit zu erledigen. Einfach super.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung

In einem unverbindlichen Beratungsgespräch lernen wir uns kennen und Ihr Kind kann unsere Profi-Nachhilfe in 2 Probestunden gratis testen.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7772