Online Lernen | Mathematik Aufgaben | Funktionen Quadratische Funktionen Wie verschiebt man eine Normalparabel?

Wie verschiebt man eine Normalparabel?

Der Graph der Funktion $f(x)=x^2$ wird Normalparabel genannt. Der Graph dieser Funktion kann in einem Koordinatensystem in 4 verschiedene Richtungen verschoben werden: Nach oben, nach unten, nach links und nach rechts.

Übersicht

Merke

Merke

Hier klicken zum Ausklappen

Verschiebung in Richtung der y-Achse

nach $\textcolor{red}{oben}$ : $f(x) = x^2 \textcolor{red}{+ a} \rightarrow$ Verschiebung des Graphen um a nach oben

nach $\textcolor{red}{unten} $ : $f(x) = x^2 \textcolor{red}{-b} \rightarrow$ Verschiebung des Graphen um b nach unten

Verschiebung in Richtung der x-Achse

nach $\textcolor{red}{rechts} $ : $f(x) = (x \textcolor{red}{-c})^2 \rightarrow$ Verschiebung des Graphen um c nach rechts

nach $\textcolor{red}{links} $ : $f(x) = (x \textcolor{red}{+d})^2 \rightarrow$ Verschiebung des Graphen um d nach links

Verschiebung nach oben

Die Normalparabel wird nach oben verschoben, indem du an die Funktionsgleichung $f(x) = x^2$ einen positiven Wert hinzu addierst. Also zum Beispiel $f(x) = x^2+10$. Dann wird der Graph um 10 Einheiten nach oben verschoben.

Normalparabel nach oben verschoben um 10
Abbildung: Normalparabel um $10$ nach oben verschoben

Die Normalparabel wurde um $10$ Einheiten in Richtung der y-Achse nach oben verschoben.

Verschiebung nach unten

Die Normalparabel wird nach unten verschoben, indem du an die Funktionsgleichung $f(x) = x^2$ einen negativen Wert hinzu addierst. Also zum Beispiel $f(x) = x^2-3$.

Normalparabel nach unten verschoben um 3
Abbildung: Normalparabel um $3$ nach unten verschoben

Die Normalparabel wurde um $3$ Einheiten in Richtung der y-Achse nach unten verschoben.

Verschiebung nach rechts

Der Graph der Normalparabel wird nach rechts verschoben, indem von dem $x$, das quadriert wird, ein bestimmter Wert subtrahiert wird. Diese Zahl steht mit dem $x$ zusammen in der Klammer.
Also zum Beispiel $f(x) = (x-3)^2$.

Normalparabel nach rechts verschoben um 3
Abbildung: Normalparabel um $3$ nach rechts verschoben

Also bewirkt der negative Wert, der mit dem $x$ in der Klammer steht, dass die Parabel auf der x-Achse nach rechts, also in den positiven Bereich verschoben wird.

Merke dir einfach: Wenn in der Klammer ein Minus steht, wird der Graph nach rechts, also in den positiven Bereich, verschoben.

Hier ist es genau umgekehrt im Vergleich zur Verschiebung nach rechts: Der Wert in der Klammer ist nun positiv und der Graph der Parabel wird daher nach links, also in den negativen Bereich, verschoben. Hierzu ein Beispiel: $f(x) = (x+5)^2$

Normalparabel nach links verschoben um 5
Abbildung: Normalparabel um $5$ nach links verschoben

Also bewirkt der positive Wert, der mit dem $x$ in der Klammer steht, dass die Parabel auf der x-Achse nach links, also in den negativen Bereich verschoben wird.

Merke dir einfach: Wenn in der Klammer ein Plus steht, wird der Graph nach links, also in den negativen Bereich, verschoben.

Beides zusammen

Natürlich können wir den Graphen zum Beispiel auch nach unten und gleichzeitig nach rechts verschieben.

Sagen wir der Graph soll um $3$ nach unten und um $1$ nach rechts verschoben werden. Wie muss unsere Funktion dann aussehen?

Vertiefung

Hier klicken zum Ausklappen
Lösung

Wir gehen schrittweise vor:
Zuerst verschieben wir den Graphen um $3$ nach unten $\rightarrow f(x) = x^2-3$.
Dann noch um $1$ nach rechts $\rightarrow f(x) = (x-1)^2-3$.
Jetzt haben wir unseren Graphen und der sieht gezeichnet so aus:

Normalparabel um 3 nach unten und 1 nach rechts verschoben
Abbildung: Normalparabel um $3$ nach unten und um $1$ nach rechts verschoben

Die Funktion kann auch in Normalform angegeben werden. Leider können wir daraus die Verschiebung nicht direkt ablesen. Schauen wir uns ein Beispiel an. $f(x) = x^2+2x+5$. Der Graph dazu sieht so aus:

Normalparabel um 1 nach links und 4 nach oben verschoben
Abbildung: Normalparabel um $1$ nach links und um $4$ nach oben verschoben

Das einzige, was wir aus der Funktion direkt ablesen können, ist der y-Achsenabschnitt, also hier $5$. 
Nun können wir die Form natürlich in die Scheitelpunktform umformen.

 $f(x) = x^2+2x+5$
 $f(x) = (x^2+2x+1-1)+5$
 $f(x) = (x^2+2x+1)+5-1$
 $f(x) = (x+1)^2+4$

Jetzt können wir die Verschiebung ablesen. Der Graph wird um 1 nach links verschoben und um 4 nach oben. Wir können dies nun nochmal mit dem Bild von oben vergleichen; das Bild bestätigt, dass der Scheitelpunkt der Funktion bei S(-1/4) liegt.


Jetzt hast du einen Überblick über die verschiedenen Verschiebungen der Normalparabel bekommen. Dieses Wissen kannst du gerne an unseren Übungen testen. Wir wünschen dir viel Spaß dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7772