Standortsuche
Ihr Kontakt zu uns:
Standort auswählen & gratis beraten lassen
Kontaktformular

Wie verschiebt man eine Normalparabel?

Mathematik > Funktionen
Wie verschiebt man eine Normalparabel? | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Der Graph der Funktion $f(x)=x^2$ wird Normalparabel genannt. Der Graph dieser Funktion kann in einem Koordinatensystem in 4 verschiedene Richtungen verschoben werden: Nach oben, nach unten, nach links und nach rechts.

Übersicht

Merke

Für beliebige positive reelle Zahlen $a$, $b$, $c$ und $d$ gilt:

Verschiebung in Richtung der y-Achse

nach $\textcolor{red}{oben}$ : $f(x) = x^2 \textcolor{red}{+ a} \rightarrow$ Verschiebung des Graphen um a nach oben

nach $\textcolor{red}{unten} $ : $f(x) = x^2 \textcolor{red}{-b} \rightarrow$ Verschiebung des Graphen um b nach unten

Verschiebung in Richtung der x-Achse

nach $\textcolor{red}{rechts} $ : $f(x) = (x \textcolor{red}{-c})^2 \rightarrow$ Verschiebung des Graphen um c nach rechts

nach $\textcolor{red}{links} $ : $f(x) = (x \textcolor{red}{+d})^2 \rightarrow$ Verschiebung des Graphen um d nach links

Verschiebung nach oben

Die Normalparabel wird nach oben verschoben, indem zu $x^2$ eine positive Zahl addiert wird. Der Graph von $g(x)=x^2+10$ ist gegenüber dem Graphen von $f(x)=x^2$ um $10$ Einheiten nach oben verschoben.

Normalparabel nach oben verschoben um 10

Abbildung: Normalparabel um $10$ nach oben verschoben

Die Normalparabel wurde um $10$ Einheiten in Richtung der y-Achse nach oben verschoben.

Verschiebung nach unten

Die Normalparabel wird nach unten verschoben, indem zu $x^2$ ein negativer Wert addiert wird. Der Graph von $g(x)=x^2-3$ ist gegenüber dem Graphen von $f(x)=x^2$ um $3$ Einheiten nach unten verschoben.

Normalparabel nach unten verschoben um 3

Abbildung: Normalparabel um $3$ nach unten verschoben

Die Normalparabel wurde um $3$ Einheiten in Richtung der y-Achse nach unten verschoben.

Verschiebung nach rechts

Der Graph der Normalparabel wird nach rechts verschoben, indem von $x$ eine positive Zahl subtrahiert wird und die Differenz dann quadriert wird.
Das ist zum Beispiel $f(x)=(x-3)^2$

Normalparabel nach rechts verschoben um 3

Abbildung: Normalparabel um $3$ nach rechts verschoben

Also bewirkt der negative Wert, der mit dem $x$ in der Klammer steht, dass die Parabel auf der x-Achse nach rechts, also in den positiven Bereich verschoben wird.

Merke dir einfach: Wenn die Zahl, die dem $x$ in der Klammer folgt, negativ ist, dann wird die Parabel nach rechts, also in den positiven Bereich verschoben.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Hier ist es genau umgekehrt im Vergleich zur Verschiebung nach rechts: Der Graph der Normalparabel wird nach links verschoben, indem zu $x$ eine positive Zahl addiert wird und die Summe dann quadriert wird.
Das ist zum Beispiel: $f(x) = (x+5)^2$

Normalparabel nach links verschoben um 5

Abbildung: Normalparabel um $5$ nach links verschoben

Also bewirkt der positive Wert, der mit dem $x$ in der Klammer steht, dass die Parabel auf der x-Achse nach links, also in den negativen Bereich verschoben wird.

Merke dir einfach: Wenn die Zahl, die dem $x$ in der Klammer folgt, positiv ist, dann wird die Parabel nach links, also in den negativen Bereich verschoben.

Beides zusammen

Natürlich können wir den Graphen zum Beispiel auch nach unten und gleichzeitig nach rechts verschieben.

Sagen wir der Graph soll um $3$ nach unten und um $1$ nach rechts verschoben werden. Wie muss unsere Funktion dann aussehen?

Vertiefung

Hier klicken zum Ausklappen
Lösung

Wir gehen schrittweise vor:
Zuerst verschieben wir den Graphen um $3$ nach unten $\rightarrow f(x) = x^2-3$.
Dann noch um $1$ nach rechts $\rightarrow f(x) = (x-1)^2-3$.
Jetzt haben wir unseren Graphen und der sieht gezeichnet so aus:

Normalparabel um 3 nach unten und 1 nach rechts verschoben

Abbildung: Normalparabel um $3$ nach unten und um $1$ nach rechts verschoben

Die Funktion kann auch in Normalform angegeben werden. Leider können wir daraus die Verschiebung nicht direkt ablesen. Schauen wir uns ein Beispiel an. $f(x) = x^2+2x+5$. Der Graph dazu sieht so aus:

Normalparabel um 1 nach links und 4 nach oben verschoben

Abbildung: Normalparabel um $1$ nach links und um $4$ nach oben verschoben

Das einzige, was wir aus der Funktion direkt ablesen können, ist der y-Achsenabschnitt, also hier $5$. 
Nun können wir die Form natürlich in die Scheitelpunktform umformen.

 $f(x) = x^2+2x+5$
 $f(x) = (x^2+2x+1-1)+5$
 $f(x) = (x^2+2x+1)+5-1$
 $f(x) = (x+1)^2+4$

Jetzt können wir die Verschiebung ablesen. Der Graph wird um 1 nach links verschoben und um 4 nach oben. Wir können dies nun nochmal mit dem Bild von oben vergleichen; das Bild bestätigt, dass der Scheitelpunkt der Funktion bei S(-1/4) liegt.


Jetzt hast du einen Überblick über die verschiedenen Verschiebungen der Normalparabel bekommen. Dieses Wissen kannst du gerne an unseren Übungen testen. Wir wünschen dir viel Spaß dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welcher Graph passt zu der Gleichung?

$f(x) = 5(x-2)^2+3,5$

Teste dein Wissen!

Die Normalparabel wird um 3 nach unten verschoben und um 1 nach rechts.
Wie sieht die Funktionsgleichung der Funktion aus?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

$f(x) = (x-a)^2+b$ 
Wofür sind die Faktoren a und b zuständig? Markiere die korrekte(n) Aussage(n).

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

In welche Richtung wird die Normalparabel verschoben?

$f(x) = 0,5\cdot(x+3)-6,5$y

Markiere die richtige Lösung.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
29.06.2025
Wunderbare sehr freundliche Betreuung,unser Sohn geht gerne zum Unterricht und bekommt alles verständlich erklärt.
06.06.2025
Meine Tochter ging 1x pro Woche für Deusch Nachhilfe zum Studienkreis und verbesserte sich in 3 Monaten von Note 5 auf Note 2 :-))
06.06.2025
Mein Sohn hat seine Noten verbessert.Vladimir ist sehr guter Leiter ,er war immer erreichbar und wenn mein Sohn krank war ,er konnte Unterricht nachholen.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7772