Mathematik > Funktionen

Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt

Inhaltsverzeichnis:

In diesem Text erklären wir dir, was die Umkehrfunktion einer Potenzfunktion ist und wie du sie berechnen kannst.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Definition

Hier erfährst du, was eine Umkehrfunktion ist und wie du eine Umkehrfunktion berechnen kannst.

Umkehrfunktion

Umkehrfunktionen ordnen, wie der Name schon sagt, die Funktion umgekehrt zu. Das bedeutet, dass der $x$-Wert mit dem $y$-Wert getauscht wird. Dies ist nur möglich, wenn es für jeden Funktionswert $(y)$ nur einen $x$-Wert gibt. Grafisch kannst du die Umkehrfunktion bilden, indem du die Funktion an der Winkelhalbierenden, also an der Funktion $f(x) =x$, spiegelst.

Die Umkehrfunktion der Funktion $f(x)$ wird mit $f^{\textcolor{red}{-1}} (x)$ gekennzeichnet. Die hochgestellte $\textcolor{red}{-1}$ ist also das Zeichen für die Umkehrfunktion.
Um eine Umkehrfunktion zu bilden, muss die Funktion zunächst nach $x$ umgestellt werden. Danach werden $x$ und $y$ getauscht, dabei vertauscht sich auch die Definitions- und die Wertemenge.

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise: Umkehrfunktion bilden

  1. Die Funktion nach $x$ auflösen.
  2. $x$ und $y$ tauschen.

Schauen wir uns zwei Beispiele an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$y = 3x^2+5$

1. Die Funktion nach $x$ auflösen.

$y = 3x^2+5~~~~~~~~~~~~~~~~~~~~~~|-5$
$y-5 = 3x^2~~~~~~~~~~~~~~~~~~~~~~~|:3$
$\frac{y-5}{3}=x^2~~~~~~~~~~~~~~~~~|\sqrt{~~}$
$\sqrt{\frac{y-5}{3}}=x$

2. $x$ und $y$ tauschen.

$\sqrt{\frac{x-5}{3}}=y$    bzw.    $y= \sqrt{\frac{x-5}{3}}$  

$f^{-1}(x) = \sqrt{\frac{x-5}{3}} $

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x)= 5x^3$

1. Die Funktion nach $x$ auflösen.

$y =5x^3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|:5$

$\frac{y~}{5~}=x^3~~~~~~~~~~~~~~~~~~~~~~~~~~~|\sqrt[3]{~~}$

$\sqrt[3]{\frac{y~}{5~}}=x$

2. $x$ und $y$ tauschen.

$f^{-1}(x) =  \sqrt[3~]{\frac{x~}{5~}}$

Potenzfunktion

Bei einer Potenzfunktion hat die Variable, also der $x$-Wert, einen Exponenten.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

$f(x) = x ^\textcolor {red}{n}$

Allgemein verlaufen Potenzfunktionen mit positiven Exponenten immer durch den Ursprung. In diesem Text schauen wir uns aber nur die Umkehrfunktionen von solchen Potenzfunktionen an.  

potenzfunktionen-beispiele
Abbildung: Graphen von Potenzfunktionen mit natürlichen Exponenten

Wie sehen die Umkehrfunktionen von solchen Potenzfunktionen mit positiven Exponenten aus?

Umkehrfunktionen von Potenzfunktionen

Die Umkehrfunktion der Potenzfunktion $f(x) = x^3$ soll gebildet werden. Wir gehen so vor, wie oben beschrieben:

Beispiel

Beispiel

Hier klicken zum Ausklappen

1. Die Funktion nach $x$ auflösen:

$y = x^3 ~~~~~~~|\sqrt[3]{~~}$
$\sqrt[3]{y}= x$

2. $x$ und $y$ tauschen:

$y= \sqrt[3]{x}$   bzw.   $f^{-1}(x) =y= \sqrt[3]{x}$

umkehrfunktionx3
Abbildung: Funktion $f(x) = x^3 $ und die Umkehrfunktion $f^{-1}(x)= \sqrt[3]{x}$

Bei allen anderen Potenzfunktionen, die einen ungeraden Exponenten haben, kann man genauso vorgehen. Bei Potenzfunktionen, die einen geraden Exponenten haben, muss man anders verfahren, denn jedem $y$-Wert werden zwei $x$-Werte zugeordnet. So ist beispielsweise bei der Funktion $y=x^2$ für den $y$-Wert $y= 4$ sowohl $x=2$ als auch $x=-2$ richtig. Daher muss der Definitionsbereich eingeschränkt werden.

Schauen wir uns dazu die Umkehrfunktion der Funktion $f(x)=x^2$ an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Es muss zunächst die Definitionsmenge festgelegt werden. Wir wollen die Umkehrfunktion für alle positiven $x$-Werte bilden, $x\ge 0$.

1. Die Funktion nach $x$ auflösen:

$f(x)= x^2 ~~~~~~~|\sqrt[2]{~~}$
$\sqrt[2]{y}= x$

2. $x$ und $y$ tauschen:

$f^{-1}(x)=  \sqrt[2]{x}$,          für alle $x\ge 0$.

umkehrfunktionx2
Abbildung: Funktion $f(x) = x^2 $ mit Umkehrfunktion $f^{-1}(x)= \sqrt[2]{x}$

Mit den Aufgaben kannst du dein neu erworbenes Wissen überprüfen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

In welchem Bild wurde die Umkehrfunktion richtig gebildet?

Teste dein Wissen!

Bilde die Umkehrfunktion von:
$f(x) = 5x^5+5$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Umkehrfunktion von $f(x) = x^4 -6$. Zunächst muss der Definitionsbereich festgelegt werden, $x \ge -6$. Markiere die richtige Lösung.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie geht man vor, um eine Umkehrfunktion zu bilden? Markiere die richtige Lösung.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-12
Die Beratung war ehrlich und sehr freundlich, es wurde auf die Bedürfnisse meiner Tochter eingegangen. Sie wurde in das Beratungsgespräch eingebunden. Sie fühlt sich in den Nachhilfestunden ernst genommen und sehr wohl. Sie geht gerne zur Nachhilfe.
Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7767