Mathematik > Funktionen

Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt

Inhaltsverzeichnis:

In diesem Text erklären wir dir, was die Umkehrfunktion einer Potenzfunktion ist und wie du sie berechnen kannst.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Definition

Hier erfährst du, was eine Umkehrfunktion ist und wie du eine Umkehrfunktion berechnen kannst.

Umkehrfunktion

Umkehrfunktionen ordnen, wie der Name schon sagt, die Variablen umgekehrt zu. Das bedeutet, dass der $x$-Wert mit dem $y$-Wert getauscht wird. Dies ist nur möglich, wenn es für jeden Funktionswert $(y)$ nur einen $x$-Wert gibt. Grafisch kannst du die Umkehrfunktion bilden, indem du die Funktion an der Winkelhalbierenden, also an der Funktion $g(x) =x$, spiegelst.

Die Umkehrfunktion der Funktion $f(x)$ wird mit $f^{\textcolor{red}{-1}} (x)$ gekennzeichnet. Die hochgestellte $\textcolor{red}{-1}$ ist also das Zeichen für die Umkehrfunktion.
Um eine Umkehrfunktion zu bilden, muss die Funktion zunächst nach $x$ umgestellt werden. Danach werden $x$ und $y$ getauscht, dabei vertauscht sich auch die Definitions- und die Wertemenge.

Methode

Methode

Hier klicken zum Ausklappen

Vorgehensweise: Umkehrfunktion bilden

Die Funktion nach $x$ auflösen.$x$ und $y$ tauschen.

Schauen wir uns zwei Beispiele an:

Beispiel

Beispiel

Hier klicken zum Ausklappen$y = 3x^2+5$

Hier müssen wir den Definitionsbereich einschränken, da das Bild eine quadratische Parabel ist, die nicht eindeutig ist.

Die Parabel hat ihren Scheitelpunkt auf der $y$-Achse. Damit ist sie zum Beispiel für $x ≥ 0$ umkehrbar. Dieser Parabelast ist eindeutig. Der Definitionsbereich für diese Funktion seien also alle reellen Zahlen, die größer oder gleich Null sind. Den Wertebereich bilden alle reellen $y$-Werte die größer oder gleich 5 sind, denn die Parabel ist nach oben offen und ihr Scheitelpunkt liegt bei 5 auf der $y$-Achse.

Definitionsbereich: D$f$:$x$ ∈ ℝ, $x$ ≥0

Wertebereich: W$f$:$y$ ∈ ℝ, $y$ ≥5

1. Die Funktion nach $x$ auflösen.

$y = 3x^2+5~~~~~~~~~~~~~~~~~~~~~~|-5$
$y-5 = 3x^2~~~~~~~~~~~~~~~~~~~~~~~|:3$
$\frac{y-5}{3}=x^2~~~~~~~~~~~~~~~~~|\sqrt{~~}$
$\sqrt{\frac{y-5}{3}}=x$

2. $x$ und $y$ tauschen.

$\sqrt{\frac{x-5}{3}}=y$    bzw.    $y= \sqrt{\frac{x-5}{3}}$  

Beispiel

Beispiel

Hier klicken zum Ausklappen

Wir bilden hier die Umkehrfunktion für $x$ ≥ 0.

Das Beispiel gibt es für den gesamten Definitionsbereich auf Wie bildet man eine Umkehrfunktion?

$f(x)= 5x^3$

1. Die Funktion nach $x$ auflösen.

$y =5x^3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|:5$

$\frac{y~}{5~}=x^3~~~~~~~~~~~~~~~~~~~~~~~~~~~|\sqrt[3]{~~}$

$\sqrt[3]{\frac{y~}{5~}}=x$

2. $x$ und $y$ tauschen.

$f^{-1}(x) =  \sqrt[3~]{\frac{x~}{5~}}$

Potenzfunktion

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Für jede ganze Zahl n ist $f(x) = x ^\textcolor {red}{n}$ eine Potenzfunktion.

Potenzfunktion mit positivem Exponenten verlaufen immer durch den Ursprung. In diesem Text schauen wir uns aber nur die Umkehrfunktionen von solchen Potenzfunktionen an.  

potenzfunktionen-beispiele

Abbildung: Graphen von Potenzfunktionen mit natürlichen Exponenten

Wie sehen die Umkehrfunktionen von solchen Potenzfunktionen mit positiven Exponenten aus?

Umkehrfunktionen von Potenzfunktionen

Die Umkehrfunktion der Potenzfunktion $f(x) = x^3$ soll gebildet werden. Wir gehen so vor, wie oben beschrieben:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Auch hier bilden wir die Umkehrfunktion für x≥0. Wir schränken hier den Definitionsbereich ein, da Wurzelfunktionen für negative Werte nicht erklärt sind.

1. Die Funktion nach $x$ auflösen:

$y = x^3 ~~~~~~~|\sqrt[3]{~~}$
$\sqrt[3]{y}= x$

2. $x$ und $y$ tauschen:

umkehrfunktionx3

Abbildung: Funktion $f(x) = x^3 $ und die Umkehrfunktion $f^{-1}(x)= \sqrt[3]{x}$

Bei allen anderen Potenzfunktionen, die einen ungeraden Exponenten haben, kann man genauso vorgehen. Bei Potenzfunktionen, die einen geraden Exponenten haben, muss man anders verfahren, denn jedem $y$-Wert außer dem vom Scheitelpunkt, werden zwei $x$-Werte zugeordnet. So ist beispielsweise bei der Funktion $y=x^2$ für den $y$-Wert $y= 4$ sowohl $x=2$ als auch $x=-2$ richtig. Daher muss der Definitionsbereich eingeschränkt werden.

Schauen wir uns dazu die Umkehrfunktion der Funktion $f(x)=x^2$ an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Es muss zunächst die Definitionsmenge festgelegt werden. Wir wollen die Umkehrfunktion für alle positiven $x$-Werte bilden, $x\ge 0$.

1. Die Funktion nach $x$ auflösen:

$f(x)= x^2 ~~~~~~~|\sqrt[2]{~~}$
$\sqrt[2]{y}= x$

2. $x$ und $y$ tauschen:

$f^{-1}(x)=  \sqrt[2]{x} =\sqrt{x}$,          für alle $x\ge 0$.

umkehrfunktionx2

Abbildung: Funktion $f(x) = x^2 $ mit Umkehrfunktion $f^{-1}(x)= \sqrt[2]{x}$

Mit den Aufgaben kannst du dein neu erworbenes Wissen überprüfen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Lektor: Frank Kreuzinger

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

In welchem Bild wurde die Umkehrfunktion richtig gebildet?

Teste dein Wissen!

Bilde die Umkehrfunktion von:
$f(x) = 5x^5+5$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Umkehrfunktion von $f(x) = x^4 -6$. Zunächst muss der Definitionsbereich festgelegt werden, $x \ge -6$. Markiere die richtige Lösung.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie geht man vor, um eine Umkehrfunktion zu bilden? Markiere die richtige Lösung.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

24.11.2022 , von Erdogan H.
Einfach Toppppp !!!!!!
24.11.2022 , von Asiye K.
Sehr hilfreich und kompetent. Noten verbessert.
24.11.2022 , von Ulrich O.
Ich fühle mich gut aufgehoben im Studienkreis. Besonders Frau Ritter gibt sich sehr viel Mühe alles zur Zufriedenheit zu erledigen. Einfach super.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung

In einem unverbindlichen Beratungsgespräch lernen wir uns kennen und Ihr Kind kann unsere Profi-Nachhilfe in 2 Probestunden gratis testen.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7767