Wie wende ich die Produktregel an? - Ableitungsregeln

Mathematik > Funktionen
Wie wende ich die Produktregel an? | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Die Anwendung Produktregel befasst sich mit einer speziellen Art und Weise der Ableitung.

Merke

Für beliebige Funktionen $u$ und $v$ gilt:

Wenn
$f(x) = u(x) \cdot v(x)$,

dann
$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Methode

Die Grundlage für dieses Kapitel bildet das Wissen über die Potenzregel und die Faktorregel. Die Themenseiten zu diesen Regeln kannst du durch Klicken auf den jeweiligen Begriff erreichen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Herleitung der Produktregel

Den Anstieg einer Sekante durch zwei Punkte $P_1(x_1,y_1)$ und $P_2(x_2,y_2)$ berechnet man durch:

$m= \Large{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}$

In dieser Formel ersetzen wir nun wie folgt:

$y_{2}$ durch $u(x+h) \cdot v(x+h)$,

$y_{1}$ durch $u(x) \cdot v(x)$,

$x_{2}$ durch $x+h$ und

$x_{1}$ durch $x$

Wir erhalten:

$f'(x)=\lim\limits_{h \to 0}\Large{(\frac{u(x+h)\cdot v(x+h) - u(x) \cdot v(x)}{x+h-x}})$

Im nächsten Schritt vereinfachen wir den Nenner und fügen in den Zähler den grün markierten Term ein. Dieser ändert den Wert der Funktion nicht, ist aber für weitere Schritte sehr wichtig.

$f'(x)=\lim\limits_{h \to 0}{(\frac{u(x+h)\cdot v(x+h) \textcolor{green}{-u(x)\cdot v(x+h)+ u(x)\cdot v(x+h)} - u(x) \cdot v(x)}{h}})$

Mithilfe des Einschubes ist es uns jetzt möglich, die Funktion zu vereinfachen. Wir können den rot markierten Bereich zusammenfassen, indem wir den Term $v(x+h)$ ausklammern. Den grün markierten Bereich können wir zusammenfassen, indem wir den Term $u(x)$ ausklammern. Wir erhalten aus:

$f'(x)=\lim\limits_{h \to 0} {(\frac{\textcolor{BrickRed}{u(x+h)\cdot v(x+h) -u(x)\cdot v(x+h)} \textcolor{green}{+ u(x)\cdot v(x+h) - u(x) \cdot v(x)}}{h}})$

den folgenden Funktionsterm:

$f'(x)=\lim\limits_{h \to 0}{(\frac{\textcolor{BrickRed}{[u(x+h)-u(x)]\cdot v(x+h)}\textcolor{green}{+ u(x)\cdot [v(x+h)-v(x)]}}{h}})$

Im nächsten Schritt ziehen wir die einzelnen Terme auseinander und erhalten:

$f'(x)={\lim\limits_{h \to 0} \frac{u(x+h)-u(x)}{h} \cdot \lim\limits_{h \to 0} v(x+h)+\lim\limits_{h \to 0} u(x) \cdot \lim\limits_{h \to 0} \frac{v(x+h)-v(x)}{h}}$

Wir erkennen im ersten Teil des Terms, dass es sich um die Ableitung $u'(x)$ handelt. Beim zweiten Term entsteht $v(x)$, da $h$ gegen $0$ strebt. Aus dem dritten Term wird $u(x)$. Der letzte Teil des Funktionsterms ist die Ableitung $v'(x)$.

Die Ableitungsregel, mit deren Hilfe ein Produkt aus zwei Funktionen abgeleitet werden kann, lautet also:

$f'(x)=u'(x) \cdot v(x) +u(x) \cdot v'(x)$

Anwendung der Produktregel: Beispiel

Schauen wir uns die Regel an einem Beispiel an. Wir haben die Funktion $f(x)=x^2 \cdot cos~x$ gegeben und wollen diese ableiten.

Laut der Produktregel benötigen wir die Ableitungen der beiden Funktionsterme. Im ersten Schritt musst du also die beiden Funktionsterme erkennen. Im zweiten Schritt musst du die beiden Funktionsterme ableiten:

$u(x)=x^2\;$, Ableitung: $\textcolor{blue}{u'(x)=2x}$

$v(x)=cos~x\;$, Ableitung: $\textcolor{green}{v'(x)=-sin~x}$

Im nächsten Schritt setzen wir alle benötigten Funktionsteile in die Ableitungsregel ein und erhalten:

$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

$f'(x)=\textcolor{blue}{2x} \cdot cos~x + x^2 \textcolor{green}{(-sin~x)}$

Im letzten Schritt vereinfachen wir die Funktion soweit wie möglich. Wir erhalten als Lösung:

$f'(x)=2x \cdot cos~x + x^2 (-sin~x) ~~~\rightarrow~~~2x \cdot cos~x - x^2 \cdot sin~x$

Die Ableitung der Funktion $f(x)=x^2 \cdot cos~x$ ist also $f'(x)=2x \cdot cos~x - x^2 sin~x$.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Leite folgende Funktion mithilfe der Produktregel ab:

$f(x)=2x^{11} \cdot 7x^{-2}$

Teste dein Wissen!

Leite mithilfe der Produktregel ab:
$f(x)=7x^2 \cdot x^4$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die erste Ableitung der Funktion $f(x)=3x^2 \cdot 3x^3$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die erste Ableitung der Funktion $f(x)=5x^5 \cdot 4x^9$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
31.05.2025
Super nettes Personal.. Hab schon das zweite Kind angemeldet, sie gehen auf die Bedürfnisse der Kinder ein.. Termine sind einfach und persönlich bzw telefonisch sehr gut zu organisieren. Fr. Wagner in Rosenheim ist wirklich sehr bemüht und in allem zu helfen. Kann ich nur empfehlen!!!
31.05.2025
Meinem Sohn hat es sehr gut geholfen, das er in mathe das Thema dank ihres Lehrers kapiert hat. Vielen Dank
18.05.2025
Alles zu bester Zufriedenheit!

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8550