Mathematik > Funktionen

Was ist eine quadratische Funktion?

Inhaltsverzeichnis:

Du behandelst gerade in Mathematik quadratische Funktionen? In diesem Lerntext geben wir dir einen Überblick über Eigenschaften von quadratischen Funktionen, etwa zur Streckung, Stauchung und Verschiebung, aber auch zu Nullstellen, welche du mit einer Formel berechnen kannst.

5 Fakten zu quadratischen Funktionen

Wir haben dir hier schonmal das Wichtigste über die Eigenschaften von quadratischen Funktionen aufgelistet.

Methode

Methode

Hier klicken zum Ausklappen

  1. Allgemeine Form: $f(x) = \textcolor{red}{a} \cdot {x^2} + {b} \cdot {x} +c$ ($a$, $b$, $c$ beliebige reelle Zahlen, $a \neq 0$)
  2. Normalform: $f(x)=x^2+px+q$ ($p$, $q$ beliebige reelle Zahlen). Deren Graph nennt man Normalparabel. Vor dem $x^2$ steht eine „$1$".
  3. Du kannst an $\textcolor{red}{a}$ erkennen, ob der Graph von $f$ gegenüber der Normalparabel gestreckt, gestaucht oder gespiegelt ist.
  4. Du erkennst an der Formel, ob die Funktion an der x-Achse oder y-Achse verschoben wurde.
  5. Du kannst die Nullstellen mit Hilfe der p-q-Formel oder der Mitternachtsformel berechnen. Die Nullstellen sind die Schnittstellen mit der x-Achse, von denen es zwei, eine oder keine geben kann.

Im Folgenden erklären wir dir diese Informationen nun detaillierter und geben dir zur quadratischen Funktion Beispiele an die Hand.

Quadratische Funktion - Erklärung und Definition

Bei einer quadratischen Funktion wird allgemein die Variable zum Quadrat genommen. Die einfachste Form ist die Normalparabel, die die Funktionsgleichung $f(x) = x^2$ besitzt.

Quadratische Funktionen können sowohl in der Normalform als auch in der Scheitelpunktform angegeben sein:

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Allgemeine Form: $f(x) = \textcolor{red}{a} \cdot {x^2} + {b} \cdot {x} +c$

Scheitelpunktform: $f(x) = \textcolor{red}a\cdot(x−\textcolor{blue}d)^2+\textcolor{green}e$
Streckungsfaktor: $\textcolor{red}a$
Scheitelpunkt: S $(\textcolor{blue}d|\textcolor{green}e)$

Die beiden Formen kann man gegenseitig ineinander umformen. Um mehr darüber zu erfahren, schaue dir die Seite für die Umformungen von Normalform und Scheitelpunktform an.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Quadratische Funktion - Streckung und Stauchung

Sowohl bei der Scheitelpunktform als auch bei der allgemeinen Form, ist der Streckungsfaktor das $a$, welches vor dem $x^2$ steht bzw. der Faktor von $x^2$ ist. Im Folgenden geben wir immer an, was der Faktor $a$ im Vergleich mit der Normalparabel bewirkt.

$\textcolor{red}a>1$ (a größer 1) $\rightarrow $ Funktion ist gestreckt

$0 < \textcolor{green}a<1$ (a liegt zwischen 0 und 1) $\rightarrow $ Funktion ist gestaucht

gestreckte_und_gestauchte_funktion

Graphen einer gestreckten und einer gestauchten quadratischen Funktion im Vergleich zur Normalparabel

Wir sehen eine gestreckte und eine gestauchte quadratische Funktion sowie die Normalparabel. Die Parabel kann auch nach unten geöffnet sein, dann ist das Vorzeichen des Streckungsfaktors negativ.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Möchtest du noch mehr über die Stauchung und die Streckung von Funktionen erfahren? In unserem Lerntext zum Thema Streckung und Stauchung einer Normalparabel findest du weitere Informationen.

Quadratische Funktion - Verschiebung

Im Folgenden seien $a$, $b$, $c$ und $d$ positive reelle Zahlen.

Verschiebung in Richtung der y-Achse

nach $\textcolor{red}{oben}$ : $f(x) = x^2 \textcolor{red}{+ a} \rightarrow$ Verschiebung des Graphen um $a$ nach oben

nach $\textcolor{red}{unten} $ : $f(x) = x^2 \textcolor{red}{-b} \rightarrow$ Verschiebung des Graphen um $b$ nach unten

Verschiebung in Richtung der x-Achse

nach $\textcolor{red}{rechts} $ : $f(x) = (x \textcolor{red}{-c})^2 \rightarrow$ Verschiebung des Graphen um $c$ nach rechts

nach $\textcolor{red}{links} $ : $f(x) = (x \textcolor{red}{+d})^2 \rightarrow$ Verschiebung des Graphen um $d$ nach links

Quadratische Funktion - Nullstellen berechnen

Die Nullstellen einer quadratischen Funktion können mit der p-q-Formel oder mit der Mitternachtsformel (abc-Formel) berechnet werden:

p-q-Formel

Die p-q-Formel kannst du anwenden, wenn die quadratische Gleichung in der Normalform, also $x^2+px+q=0$ vorliegt. Eventuell musst du vorher umstellen.

Merke

Merke

Hier klicken zum Ausklappen

p-q-Formel

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{green}{q}}$

Bestimmung von p und von q:

$f(x) = x^2+{\textcolor{red}{ p}} \cdot x +{\textcolor{green}{ q}} = 0$

Beispiel: Nullstellen mit der p-q-Formel berechnen

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = x^2 + 4\cdot  x-16 = 0$

Wir können die Werte für $p$ und $q$ aus der Gleichung ablesen und danach einsetzen:

  • $ p= 4$ 
  • $ q= -16$


$x_{1/2} = -\frac{4}{2}\pm \sqrt{(\frac{4}{2})^2-(-16)}$
$x_{1/2} = -2\pm \sqrt{4 +16}$
$x_{1/2} = -2\pm \sqrt{20}$
$x_1 = -2+ \sqrt{20} \approx 2,47$
$x_2 = -2 - \sqrt{20} \approx -6,47 $

Die Nullstellen liegen bei $x_1 \approx 2,47$ und $x_2 \approx -6,47$

Mitternachtsformel

Merke

Merke

Hier klicken zum Ausklappen

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Bestimmung von $\textcolor{blue}{a},\textcolor{green}{b}$ und $\textcolor{brown}{c}$:

$f(x) = \textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c}$

Beispiel: Nullstellen mit der Mitternachtsformel berechnen:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = 0,25 x^2 - 0,6 x + 0,2= 0$

Wir können die a,b,c-Werte ablesen:
$\textcolor{blue}{a= 0,25}$
$\textcolor{green}{b= -0,6}$
$\textcolor{brown}{c= 0,2}$

Und müssen sie in die Formel einsetzen:
$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a}~ \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

$x_{1,2} = \frac{\textcolor{green}{-(-0,6)}~\pm~\sqrt{\textcolor{green}{(-0,6)}^2~-~4~ \cdot~\textcolor{blue}{0,25} ~\cdot~\textcolor{brown}{0,2}}}{2~ \cdot~\textcolor{blue}{0,25}}$

Dies müssen wir jetzt nur noch ausrechnen:

$x_{1,2} = \frac{0,6~\pm~\sqrt{(0,6)^2~-~4~ \cdot~0,25~ \cdot~0,2}}{2~ \cdot~0,25}$

$x_{1,2} = \frac{0,6~\pm~\sqrt{0,36~-~0,2}}{0,5}$

$x_{1,2} = \frac{0,6~\pm~\sqrt{0,16}}{0,5}$

$x_{1,2} = \frac{0,6~\pm~0,4}{0,5}$

$x_{1} = \frac{0,6~+~0,4}{0,5}= \frac{1}{0,5}= 2$

$x_{2} = \frac{0,6~-~0,4}{0,5}= \frac{0,2}{0,5}=0,4$

Also sind die zwei Nullstellen $x_1=2$ und $x_2=0,4$.

Eine quadratische Funktion kann keine, eine oder zwei Nullstellen haben. Wenn der Tiefpunkt über der x-Achse liegt, hat die Funktion keine Nullstelle. Berührt die Funktion die x-Achse, so liegt nur eine Nullstelle vor.

Nun hast du einen Überblick über die quadratischen Funktionen bekommen. Überprüfe dein Wissen mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Lektor: Frank Kreuzinger

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie muss die Parabel zu $y(x) = x^2$ verschoben werden, damit der Graph zu f: $y(x) = (x-2)^2+3$ entsteht?

Teste dein Wissen!

Wie wird folgende Funktion bezeichnet: $f(x) = 5(x-2)^2+4$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist der Scheitelpunkt folgender Funktion?
$f(x) = 2(x+3)^2-5$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was sind die Nullstellen der Funktion $f(x) = x^2+4x+3$?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

24.11.2022 , von Erdogan H.
Einfach Toppppp !!!!!!
24.11.2022 , von Asiye K.
Sehr hilfreich und kompetent. Noten verbessert.
24.11.2022 , von Ulrich O.
Ich fühle mich gut aufgehoben im Studienkreis. Besonders Frau Ritter gibt sich sehr viel Mühe alles zur Zufriedenheit zu erledigen. Einfach super.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung

In einem unverbindlichen Beratungsgespräch lernen wir uns kennen und Ihr Kind kann unsere Profi-Nachhilfe in 2 Probestunden gratis testen.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8570