Online Lernen | Mathematik Aufgaben | Funktionen Quadratische Funktionen Was ist eine quadratische Funktion?

Was ist eine quadratische Funktion?

Du behandelst gerade in Mathematik quadratische Funktionen? In diesem Lerntext geben wir dir einen Überblick über Eigenschaften von quadratischen Funktionen, etwa zur Streckung, Stauchung und Verschiebung, aber auch zu Nullstellen, welche du mit einer Formel berechnen kannst.

5 Fakten zu quadratischen Funktionen

Wir haben dir hier schonmal das Wichtigste über die Eigenschaften von quadratischen Funktionen aufgelistet.

Methode

Methode

Hier klicken zum Ausklappen
  1. Allgemeine Form: $f(x) = \textcolor{red}{a} \cdot {x^2} + {b} \cdot {x} +c$ ($a$, $b$, $c$ beliebige reelle Zahlen, $a \neq 0$)
  2. Normalform: $f(x)=x^2+px+q$ ($p$, $q$ beliebige reelle Zahlen). Deren Graph nennt man Normalparabel. Vor dem $x^2$ steht eine „$1$".
  3. Du kannst an $\textcolor{red}{a}$ erkennen, ob der Graph von $f$ gegenüber der Normalparabel gestreckt, gestaucht oder gespiegelt ist.
  4. Du erkennst an der Formel, ob die Funktion an der x-Achse oder y-Achse verschoben wurde.
  5. Du kannst die Nullstellen mit Hilfe der p-q-Formel oder der Mitternachtsformel berechnen. Die Nullstellen sind die Schnittstellen mit der x-Achse, von denen es zwei, eine oder keine geben kann.

Im Folgenden erklären wir dir diese Informationen nun detaillierter und geben dir zur quadratischen Funktion Beispiele an die Hand.

Quadratische Funktion - Erklärung und Definition

Bei einer quadratischen Funktion wird allgemein die Variable zum Quadrat genommen. Die einfachste Form ist die Normalparabel, die die Funktionsgleichung $f(x) = x^2$ besitzt.

Quadratische Funktionen können sowohl in der Normalform als auch in der Scheitelpunktform angegeben sein:

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Allgemeine Form: $f(x) = \textcolor{red}{a} \cdot {x^2} + {b} \cdot {x} +c$

Scheitelpunktform: $f(x) = \textcolor{red}a\cdot(x−\textcolor{blue}d)^2+\textcolor{green}e$
Streckungsfaktor: $\textcolor{red}a$
Scheitelpunkt: S $(\textcolor{blue}d|\textcolor{green}e)$

Die beiden Formen kann man gegenseitig ineinander umformen. Um mehr darüber zu erfahren, schaue dir die Seite für die Umformungen von Normalform und Scheitelpunktform an.

Quadratische Funktion - Streckung und Stauchung

Sowohl bei der Scheitelpunktform als auch bei der allgemeinen Form, ist der Streckungsfaktor das $a$, welches vor dem $x^2$ steht bzw. der Faktor von $x^2$ ist. Im Folgenden geben wir immer an, was der Faktor $a$ im Vergleich mit der Normalparabel bewirkt.

$\textcolor{red}a>1$ (a größer 1) $\rightarrow $ Funktion ist gestreckt

$0 < \textcolor{green}a<1$ (a liegt zwischen 0 und 1) $\rightarrow $ Funktion ist gestaucht

 

gestreckte_und_gestauchte_funktion
Abbildung: gestreckte und gestauchte Funktion

Wir sehen eine gestreckte und eine gestauchte quadratische Funktion. Die Parabel kann auch nach unten geöffnet sein, dann ist das Vorzeichen des Streckungsfaktors negativ.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Möchtest du noch mehr über die Stauchung und die Streckung von Funktionen erfahren? In unserem Lerntext zum Thema Streckung und Stauchung einer Normalparabel findest du weitere Informationen.

Quadratische Funktion - Verschiebung

Im Folgenden seien $a$, $b$, $c$ und $d$ positive reelle Zahlen.

Verschiebung in Richtung der y-Achse

nach $\textcolor{red}{oben}$ : $f(x) = x^2 \textcolor{red}{+ a} \rightarrow$ Verschiebung des Graphen um $a$ nach oben

nach $\textcolor{red}{unten} $ : $f(x) = x^2 \textcolor{red}{-b} \rightarrow$ Verschiebung des Graphen um $b$ nach unten

Verschiebung in Richtung der x-Achse

nach $\textcolor{red}{rechts} $ : $f(x) = (x \textcolor{red}{-c})^2 \rightarrow$ Verschiebung des Graphen um $c$ nach rechts

nach $\textcolor{red}{links} $ : $f(x) = (x \textcolor{red}{+d})^2 \rightarrow$ Verschiebung des Graphen um $d$ nach links

Quadratische Funktion - Nullstellen berechnen

Die Nullstellen einer quadratischen Funktion können mit der p-q-Formel oder mit der Mitternachtsformel (abc-Formel) berechnet werden:

p-q-Formel

Die p-q-Formel kannst du anwenden, wenn die quadratische Gleichung in der Normalform, also $x^2+px+q=0$ vorliegt. Eventuell musst du vorher umstellen.

Merke

Merke

Hier klicken zum Ausklappen

p-q-Formel

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{green}{q}}$

Bestimmung von p und von q:

$f(x) = x^2+{\textcolor{red}{ p}} \cdot x +{\textcolor{green}{ q}} = 0$

Beispiel: Nullstellen mit der p-q-Formel berechnen

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = x^2 + 4\cdot  x-16 = 0$

Wir können die Werte für $p$ und $q$ aus der Gleichung ablesen und danach einsetzen:

  • $ p= 4$ 
  • $ q= -16$


$x_{1/2} = -\frac{4}{2}\pm \sqrt{(\frac{4}{2})^2-(-16)}$
$x_{1/2} = -2\pm \sqrt{4 +16}$
$x_{1/2} = -2\pm \sqrt{20}$
$x_1 = -2+ \sqrt{20} \approx 2,47$
$x_2 = -2 - \sqrt{20} \approx -6,47 $

Die Nullstellen liegen bei $x_1 \approx 2,47$ und $x_2 \approx -6,47$

Mitternachtsformel

Die Mitternachtsformel kannst du anwenden, wenn die quadratische Gleichung in der allgemeinen Form, also $ax^2+bx+c=0$ vorliegt. Eventuell musst du vorher umstellen.

Merke

Merke

Hier klicken zum Ausklappen

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Bestimmung von $\textcolor{blue}{a},\textcolor{green}{b}$ und $\textcolor{brown}{c}$:

$f(x) = \textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c}$

Beispiel: Nullstellen mit der Mitternachtsformel berechnen:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = 0,25 x^2 - 0,6 x + 0,2= 0$

Wir können die a,b,c-Werte ablesen:
$\textcolor{blue}{a= 0,25}$
$\textcolor{green}{b= -0,6}$
$\textcolor{brown}{c= 0,2}$

Und müssen sie in die Formel einsetzen:
$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a}~ \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

$x_{1,2} = \frac{\textcolor{green}{-(-0,6)}~\pm~\sqrt{\textcolor{green}{(-0,6)}^2~-~4~ \cdot~\textcolor{blue}{0,25} ~\cdot~\textcolor{brown}{0,2}}}{2~ \cdot~\textcolor{blue}{0,25}}$

Dies müssen wir jetzt nur noch ausrechnen:

$x_{1,2} = \frac{0,6~\pm~\sqrt{(0,6)^2~-~4~ \cdot~0,25~ \cdot~0,2}}{2~ \cdot~0,25}$

$x_{1,2} = \frac{0,6~\pm~\sqrt{0,36~-~0,2}}{0,5}$

$x_{1,2} = \frac{0,6~\pm~\sqrt{0,16}}{0,5}$

$x_{1,2} = \frac{0,6~\pm~0,4}{0,5}$

$x_{1} = \frac{0,6~+~0,4}{0,5}= \frac{1}{0,5}= 2$

$x_{2} = \frac{0,6~-~0,4}{0,5}= \frac{0,2}{0,5}=0,4$

Also sind die zwei Nullstellen $x_1=2$ und $x_2=0,4$.

Eine quadratische Funktion kann keine, eine oder zwei Nullstellen haben. Wenn der Tiefpunkt über der x-Achse liegt, hat die Funktion keine Nullstelle. Berührt die Funktion die x-Achse, so liegt nur eine Nullstelle vor.

Nun hast du einen Überblick über die quadratischen Funktionen bekommen. Überprüfe dein Wissen mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8570