Was ist eine quadratische Funktion?

Mathematik > Funktionen
Was ist eine quadratische Funktion? | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Du behandelst gerade in Mathematik quadratische Funktionen? In diesem Lerntext geben wir dir einen Überblick über Eigenschaften von quadratischen Funktionen, etwa zur Streckung, Stauchung und Verschiebung, aber auch zu Nullstellen, welche du mit einer Formel berechnen kannst.

5 Fakten zu quadratischen Funktionen

Wir haben dir hier schonmal das Wichtigste über die Eigenschaften von quadratischen Funktionen aufgelistet.

Methode

  1. Allgemeine Form: $f(x) = \textcolor{red}{a} \cdot {x^2} + {b} \cdot {x} +c$ ($a$, $b$, $c$ beliebige reelle Zahlen, $a \neq 0$)
  2. Normalform: $f(x)=x^2+px+q$ ($p$, $q$ beliebige reelle Zahlen). Deren Graph nennt man Normalparabel. Vor dem $x^2$ steht eine „$1$".
  3. Du kannst an $\textcolor{red}{a}$ erkennen, ob der Graph von $f$ gegenüber der Normalparabel gestreckt, gestaucht oder gespiegelt ist.
  4. Du erkennst an der Formel, ob die Funktion an der x-Achse oder y-Achse verschoben wurde.
  5. Du kannst die Nullstellen mit Hilfe der p-q-Formel oder der Mitternachtsformel berechnen. Die Nullstellen sind die Schnittstellen mit der x-Achse, von denen es zwei, eine oder keine geben kann.

Im Folgenden erklären wir dir diese Informationen nun detaillierter und geben dir zur quadratischen Funktion Beispiele an die Hand.

Quadratische Funktion - Erklärung und Definition

Bei einer quadratischen Funktion wird allgemein die Variable zum Quadrat genommen. Die einfachste Form ist die Normalparabel, die die Funktionsgleichung $f(x) = x^2$ besitzt.

Quadratische Funktionen können sowohl in der Normalform als auch in der Scheitelpunktform angegeben sein:

Gut zu wissen

Hinweis

Allgemeine Form: $f(x) = \textcolor{red}{a} \cdot {x^2} + {b} \cdot {x} +c$

Scheitelpunktform: $f(x) = \textcolor{red}a\cdot(x−\textcolor{blue}d)^2+\textcolor{green}e$
Streckungsfaktor: $\textcolor{red}a$
Scheitelpunkt: S $(\textcolor{blue}d|\textcolor{green}e)$

Die beiden Formen kann man gegenseitig ineinander umformen. Um mehr darüber zu erfahren, schaue dir die Seite für die Umformungen von Normalform und Scheitelpunktform an.

Quadratische Funktion - Streckung und Stauchung

Sowohl bei der Scheitelpunktform als auch bei der allgemeinen Form, ist der Streckungsfaktor das $a$, welches vor dem $x^2$ steht bzw. der Faktor von $x^2$ ist. Im Folgenden geben wir immer an, was der Faktor $a$ im Vergleich mit der Normalparabel bewirkt.

$\textcolor{red}a>1$ (a größer 1) $\rightarrow $ Funktion ist gestreckt

$0 < \textcolor{green}a<1$ (a liegt zwischen 0 und 1) $\rightarrow $ Funktion ist gestaucht

gestreckte_und_gestauchte_funktion

Graphen einer gestreckten und einer gestauchten quadratischen Funktion im Vergleich zur Normalparabel

Wir sehen eine gestreckte und eine gestauchte quadratische Funktion sowie die Normalparabel. Die Parabel kann auch nach unten geöffnet sein, dann ist das Vorzeichen des Streckungsfaktors negativ.

Gut zu wissen

Hinweis

Möchtest du noch mehr über die Stauchung und die Streckung von Funktionen erfahren? In unserem Lerntext zum Thema Streckung und Stauchung einer Normalparabel findest du weitere Informationen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Quadratische Funktion - Verschiebung

Im Folgenden seien $a$, $b$, $c$ und $d$ positive reelle Zahlen.

Verschiebung in Richtung der y-Achse

nach $\textcolor{red}{oben}$ : $f(x) = x^2 \textcolor{red}{+ a} \rightarrow$ Verschiebung des Graphen um $a$ nach oben

nach $\textcolor{red}{unten} $ : $f(x) = x^2 \textcolor{red}{-b} \rightarrow$ Verschiebung des Graphen um $b$ nach unten

Verschiebung in Richtung der x-Achse

nach $\textcolor{red}{rechts} $ : $f(x) = (x \textcolor{red}{-c})^2 \rightarrow$ Verschiebung des Graphen um $c$ nach rechts

nach $\textcolor{red}{links} $ : $f(x) = (x \textcolor{red}{+d})^2 \rightarrow$ Verschiebung des Graphen um $d$ nach links

Quadratische Funktion - Nullstellen berechnen

Die Nullstellen einer quadratischen Funktion können mit der p-q-Formel oder mit der Mitternachtsformel (abc-Formel) berechnet werden:

p-q-Formel

Die p-q-Formel kannst du anwenden, wenn die quadratische Gleichung in der Normalform, also $x^2+px+q=0$ vorliegt. Eventuell musst du vorher umstellen.

Merke

p-q-Formel

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{green}{q}}$

Bestimmung von p und von q:

$f(x) = x^2+{\textcolor{red}{ p}} \cdot x +{\textcolor{green}{ q}} = 0$

Beispiel: Nullstellen mit der p-q-Formel berechnen

Beispiel

$f(x) = x^2 + 4\cdot  x-16 = 0$

Wir können die Werte für $p$ und $q$ aus der Gleichung ablesen und danach einsetzen:

  • $ p= 4$ 
  • $ q= -16$


$x_{1/2} = -\frac{4}{2}\pm \sqrt{(\frac{4}{2})^2-(-16)}$
$x_{1/2} = -2\pm \sqrt{4 +16}$
$x_{1/2} = -2\pm \sqrt{20}$
$x_1 = -2+ \sqrt{20} \approx 2,47$
$x_2 = -2 - \sqrt{20} \approx -6,47 $

Die Nullstellen liegen bei $x_1 \approx 2,47$ und $x_2 \approx -6,47$

Mitternachtsformel

Merke

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Bestimmung von $\textcolor{blue}{a},\textcolor{green}{b}$ und $\textcolor{brown}{c}$:

$f(x) = \textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c}$

Beispiel: Nullstellen mit der Mitternachtsformel berechnen:

Beispiel

$f(x) = 0,25 x^2 - 0,6 x + 0,2= 0$

Wir können die a,b,c-Werte ablesen:
$\textcolor{blue}{a= 0,25}$
$\textcolor{green}{b= -0,6}$
$\textcolor{brown}{c= 0,2}$

Und müssen sie in die Formel einsetzen:
$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a}~ \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

$x_{1,2} = \frac{\textcolor{green}{-(-0,6)}~\pm~\sqrt{\textcolor{green}{(-0,6)}^2~-~4~ \cdot~\textcolor{blue}{0,25} ~\cdot~\textcolor{brown}{0,2}}}{2~ \cdot~\textcolor{blue}{0,25}}$

Dies müssen wir jetzt nur noch ausrechnen:

$x_{1,2} = \frac{0,6~\pm~\sqrt{(0,6)^2~-~4~ \cdot~0,25~ \cdot~0,2}}{2~ \cdot~0,25}$

$x_{1,2} = \frac{0,6~\pm~\sqrt{0,36~-~0,2}}{0,5}$

$x_{1,2} = \frac{0,6~\pm~\sqrt{0,16}}{0,5}$

$x_{1,2} = \frac{0,6~\pm~0,4}{0,5}$

$x_{1} = \frac{0,6~+~0,4}{0,5}= \frac{1}{0,5}= 2$

$x_{2} = \frac{0,6~-~0,4}{0,5}= \frac{0,2}{0,5}=0,4$

Also sind die zwei Nullstellen $x_1=2$ und $x_2=0,4$.

Eine quadratische Funktion kann keine, eine oder zwei Nullstellen haben. Wenn der Tiefpunkt über der x-Achse liegt, hat die Funktion keine Nullstelle. Berührt die Funktion die x-Achse, so liegt nur eine Nullstelle vor.

Nun hast du einen Überblick über die quadratischen Funktionen bekommen. Überprüfe dein Wissen mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie muss die Parabel zu $y(x) = x^2$ verschoben werden, damit der Graph zu f: $y(x) = (x-2)^2+3$ entsteht?

Teste dein Wissen!

Wie wird folgende Funktion bezeichnet: $f(x) = 5(x-2)^2+4$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist der Scheitelpunkt folgender Funktion?
$f(x) = 2(x+3)^2-5$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was sind die Nullstellen der Funktion $f(x) = x^2+4x+3$?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8570