Mathematik > Funktionen

Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt

Inhaltsverzeichnis:

Merke

Merke

Hier klicken zum Ausklappen
  1. $f(x) = 2 \cdot e^{2x}$
  2. $f´(x) = 2 \cdot 2\cdot e^{2x}$$=4 \cdot e^{2x}$
  3. $f´´(x) = 2 \cdot 4\cdot e^{2x}$$=8 \cdot e^{2x}$
  4. $f´´´(x) = 2 \cdot 8\cdot e^{2x}$$=16 \cdot e^{2x}$

In diesem Text erklären wir dir ganz leicht, was eine e-Funktion ist, wie du eine e-Funktion ableiten kannst, wie die Stammfunktion gebildet wird und welche Eigenschaften die e-Funktion hat. Schau dir als Grundlage am besten unsere Seite zur Kettenregel an, denn diese Ableitungsregel kannst du für dieses Thema gut gebrauchen.

E-Funktionen leicht erklärt

Die e-Funktion, auch natürliche Exponentialfunktion genannt, hat die Gleichung: $f(x) = e ^x$ (ausgesprochen: e hoch x). Die Basis ist die Eulersche Zahl. Der Exponent ist die Variable (hier $x$). Daher gehört die e-Funktion auch zu der Kategorie der Exponentialfunktionen.

e-Funktion
Abbildung: e-Funktion

Die Ableitung der e-Funktion ist gleich der Funktion, daher gilt: $f(x) = f ' (x) = f '' (x) = ...$.
Wenn man die e-Funktion ableitet, das heißt die Steigung der Funktion in einer Funktion darstellt, ergibt sich die gleiche Funktion! Das ist die Besonderheit der e-Funktion.

Merke

Merke

Hier klicken zum Ausklappen

Eulersche Zahl

$e \approx 2,718$

Die Eulersche Zahl wurde nach dem Mathematiker Leonhard Euler benannt. Er hat im Jahr 1748 herausgefunden, dass diese Zahl der Grenzwert der unendlichen Reihe ist:

$e = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1 \cdot 2\cdot 3} + \frac{1} {1\cdot 2\cdot 3\cdot 4} + ...= \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + ...=\sum\nolimits_{n=0}^\infty \frac{1}{n!}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

E-Funktion: Eigenschaften

Monotonie

Die e-Funktion ist streng monoton wachsend und das Wachstum ist exponentiell. Das bedeutet, dass die Funktion sehr schnell ansteigt. Je größer $x$ wird, desto größer wird auch der $y$-Wert, wie wir auf der Abbildung erkennen können:

e-Funktion1
Abbildung: e-Funktion, schnelles Wachstum

Schnittpunkte mit den Achsen

Die e-Funktion hat keine Nullstellen, da $f(x) = e ^x = 0$ nicht definiert ist. Somit schneidet die e-Funktion die x-Achse nicht, sie nähert sich dieser asymptotisch an. Dies können wir auch an der Abbildung erkennen: Je kleiner der $x$-Wert, desto näher kommt die Funktion der $x$-Achse.
Die Funktion schneidet die y-Achse an der Stelle $1$, da $f(0) = e ^0 = 1$ ist. 

Umkehrfunktion

Die Umkehrfunktion der e-Funktion ist die natürliche Logarithmusfunktion. $f(x) = e^x$ , $f^{-1} (x) = ln (x)$

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Umkehrfunktion von $f(x) = e^x$
$f^{-1}(x) =\log_e (x) = ln (x)$

umkehrfunktion_e-Funktion
Abbildung: Umkehrfunktion der e-Funktion $\rightarrow f^{-1}(x) = ln (x)$

Definitions- und Wertemenge

Für die x-Werte dürfen wir jede beliebige rationale Zeit einsetzen. Das bedeutet, die Definitionsmenge ist: $D_f = \mathbb{R}$

Die Wertemenge sind die y-Werte, die beim Einsetzen der jeweiligen Definitionsmenge herauskommen. Diese sind bei der e-Funktion alle positiven Zahlen, denn wie wir an der Funktion sehen, verläuft sie oberhalb der x-Achse. $\rightarrow W_f = \mathbb{R^+}$

E-Funktion ableiten und Stammfunktion bilden

Die Ableitung und auch die Stammfunktion der e-Funktion bildet wieder die e-Funktion:

Merke

Merke

Hier klicken zum Ausklappen

Ableitung: $f '(x) = e ^x $
Stammfunktion: $F (x) = e^x $

Doch wieso ist dies bei der e-Funktion der Fall?

Die allgemeine Ableitung von Exponentialfunktionen ist: $f(x) = a ^x$ $\rightarrow f ' (x) = a^x \cdot ln(a)$

Wenden wir dies auf $f(x) = e^x $ an, erhalten wir:

$ f ' (x) = (e^x)' = e^x \cdot ln(e) = e^x \cdot 1 = e^x $

Mit den Übungsaufgaben kannst du dein neu erworbenes Wissen zum Ableiten von Exponentialfunktionen prüfen. Ich wünsche dir viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wieso ist die Ableitung der e-Funktion gleich der Funktion?

Teste dein Wissen!

Wie lautet die Umkehrfunktion der e-Funktion

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die dritte Ableitung der e-Funktion?
$f(x) = e^x$
Markiere die richtige Antwort.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere alle richtigen Antworten zur e-Funktion, $f(x) = e^x$.

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-12
Die Beratung war ehrlich und sehr freundlich, es wurde auf die Bedürfnisse meiner Tochter eingegangen. Sie wurde in das Beratungsgespräch eingebunden. Sie fühlt sich in den Nachhilfestunden ernst genommen und sehr wohl. Sie geht gerne zur Nachhilfe.
Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8551