Suche
Kontakt
>
Mathematik > Funktionen

Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt

Was sind e-Funktionen? | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Merke

  1. $f(x) = 2 \cdot e^{2x}$
  2. $f´(x) = 2 \cdot 2\cdot e^{2x}$$=4 \cdot e^{2x}$
  3. $f´´(x) = 2 \cdot 4\cdot e^{2x}$$=8 \cdot e^{2x}$
  4. $f´´´(x) = 2 \cdot 8\cdot e^{2x}$$=16 \cdot e^{2x}$

In diesem Text erklären wir dir ganz leicht, was eine e-Funktion ist, wie du eine e-Funktion ableiten kannst, wie eine Stammfunktion gebildet wird und welche Eigenschaften die e-Funktion hat. Schau dir als Grundlage am besten unsere Seite zur Kettenregel an, denn diese Ableitungsregel kannst du für dieses Thema gut gebrauchen.

E-Funktionen leicht erklärt

Die e-Funktion, auch natürliche Exponentialfunktion genannt, hat die Gleichung: $f(x) = e ^x$ (ausgesprochen: e hoch x). Die Basis ist die Eulersche Zahl. Der Exponent ist die Variable (hier $x$). Daher gehört die e-Funktion auch zu der Kategorie der Exponentialfunktionen.

e-Funktion

Abbildung: e-Funktion

Für diese Funktion gilt:

$e$$x$=$f(x)$=$f$ *$(x)$=...

Mann kann also die Steigung der e-Funktion an jeder Stelle $x$ mit derselben Funktion berechnen. Das ist eine Besonderheit dieser Funktion.

Merke

Eulersche Zahl

$e \approx 2,718$

Die Eulersche Zahl wurde nach dem Mathematiker Leonhard Euler benannt. Er hat im Jahr 1748 herausgefunden, dass diese Zahl der Grenzwert der unendlichen Reihe ist:

$e = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1 \cdot 2\cdot 3} + \frac{1} {1\cdot 2\cdot 3\cdot 4} + ...= \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + ...=\sum\nolimits_{n=0}^\infty \frac{1}{n!}$

$n$! wird gesprochen: n Fakultät. Es gilt zum Beispiel: 5!= 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5. Die Besonderheit ist 0!=1.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Die e-Funktion: Eigenschaften

Monotonie

Die e-Funktion ist streng monoton wachsend und das Wachstum ist exponentiell. Das bedeutet, dass die Funktion sehr schnell ansteigt. Je größer $x$ wird, desto größer wird auch der $y$-Wert, wie wir auf der Abbildung erkennen können:

e-Funktion1

Abbildung: e-Funktion, schnelles Wachstum

Schnittpunkte mit den Achsen

Die e-Funktion hat keine Nullstellen, da eine Potenz niemals Null sein kann. Also gilt stets $f(x)$ = $e$ x ≠ $0$. Ihr Graph nähert sich mit kleiner werdendem $x$ immer mehr der $x$-Achse und es gilt $\lim\limits_{x \to -∞} $ $e$x = $0$. Diese Achse ist also eine gerade Asymptote.

Der Graph dieser Funktion schneidet die $y$-Achse an der Stelle 1, da $f(0)$ = $e$0 = $1$ ist.

Umkehrfunktion

Die Umkehrfunktion der e-Funktion ist die natürliche Logarithmusfunktion. $f(x) = e^x$ , $f^{-1} (x) = ln (x)$

Gut zu wissen

Hinweis

Umkehrfunktion von $f(x) = e^x$
$f^{-1}(x) =\log_e (x) = ln (x)$

umkehrfunktion_e-Funktion

Abbildung: Funktionen $\rightarrow f^{-1}(x) = ln (x)$. Beide sind Umkehrfunktionen und damit Spiegelbilder voneinander an der Geraden $y$ = $x$.

Definitions- und Wertemenge

Für $x$ dürfen wir jede reelle Zahl einsetzen. Das bedeutet, die Definitionsmenge ist: $D_f = \mathbb{R}$

Wie wir an dem Graphen sehen, verläuft er oberhalb der x –Achse, die Asymptote ist. Der Wertebereich ist also: $ W_f = \mathbb{R^+}$. Das sind alle positiven reellen Zahlen.

Die e-Funktion ableiten und eine Stammfunktion bilden

Die Ableitung und auch die Stammfunktion der e-Funktion bildet wieder eine e-Funktion:

Merke

Ableitung: $f '(x) = e ^x $
Stammfunktion: $F (x) = e^x $

Doch wieso ist dies bei der e-Funktion der Fall?

Die allgemeine Ableitung von Exponentialfunktionen ist: $f(x) = a ^x$ $\rightarrow f ' (x) = a^x \cdot ln(a)$

Wenden wir dies auf $f(x) = e^x $ an, erhalten wir:

$ f ' (x) = (e^x)' = e^x \cdot ln(e) = e^x \cdot 1 = e^x $

Mit den Übungsaufgaben kannst du dein neu erworbenes Wissen zum Ableiten von Exponentialfunktionen prüfen. Ich wünsche dir viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wieso ist die Ableitung der e-Funktion gleich der Funktion?

Teste dein Wissen!

Wie lautet die Umkehrfunktion der e-Funktion

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die dritte Ableitung der e-Funktion?
$f(x) = e^x$
Markiere die richtige Antwort.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere alle richtigen Antworten zur e-Funktion, $f(x) = e^x$.

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8551