Kosinusfunktion - Streckung, Stauchung und Periode

Mathematik > Funktionen
Kosinusfunktion - Streckung, Stauchung und Periode! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Lerntext klären wir verschiedene Begrifflichkeiten und Bedeutungen von Variablen der allgemeinen Kosinusfunktion. Dabei gehen wir vor allem auf den Streckungsfaktor, die Periode und die Amplitude, aber auch die Ruhelage ein.

Die allgemeine Kosinusfunktion

Die Kosinusfunktion ordnet jedem Winkel eine Streckenlänge zu. Wie das passiert, kannst du auf der Seite Kosinusfunktion und ihre Eigenschaften nachlesen. Nachfolgend erklären wir dir die Bedeutung der Variablen a und b in der Funktion:

$y\;=\;\textcolor{orange}{a}\;\cdot \cos(\textcolor{green}{b}\;\cdot x)$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Streckungsfaktor $\textcolor{orange}{a}$

Die reelle Zahl $\textcolor{orange}{a}$, die in dieser Funktion als Streckungsfaktor auftritt, wirkt sich auf verschiedene Weisen auf den Verlauf der Funktion $y$=$cos(bx)$ aus. Der Streckungsfaktor $\textcolor{orange}{a}$ streckt, staucht oder spiegelt. Wie sich dieser Faktor auswirkt, zeigen wir dir in der folgenden Abbildung.

Kosinusfunktion mit verschiedenen Streckungsfaktoren und Amplituden

Wirkungen des Streckfaktors a auf die Funktion f(x)=cos⁡ x

Bei der blau gezeichneten Funktion $g(x)=3 cos⁡ x$ ist $a=3$. Diese Funktion ist gegenüber der grün gezeichneten Funktion gestreckt.<br/>Bei der rot gezeichneten Funktion $h(x)=0,7 cos ⁡x$ ist $a=0,7$. Diese Funktion ist gegenüber der grün gezeichneten Funktion gestaucht.<br/>Bei der lila gezeichneten Funktion $i(x)= -2 cos ⁡x$ ist $a= -2$. Diese Funktion ist gegenüber der grün gezeichneten Funktion $f(x)=cos⁡ x$ zusätzlich gespiegelt.

Merke

$\textcolor{orange}{a}$ ist zwar, wie du jetzt weißt, der Streckungsfaktor, ABER die Kosinusfunktion kann auch gestaucht werden. Du kannst dir hierbei merken:

$\textcolor{orange}a>1$ (a größer 1) $\rightarrow $ Funktion ist gestreckt.

$0<\textcolor{orange}a<1$ (a liegt zwischen 0 und 1) $\rightarrow $ Funktion ist gestaucht.

Die Veränderung des Streckungsfaktors verändert zugleich den Wertebereich der Funktion.

Merke

Die Amplitude der Kosinusfunktion wird der größte Ausschlag nach oben und unten genannt.

Die Variable $a$ der allgemeinen Kosinusfunktion bezeichnet den Streckungsfaktor. Dieser verändert die Amplitude und damit die Wertemenge.

Periode $\textcolor{green}{p}$ der Kosinusfunktion

Die Kosinusfunktion verläuft, wie die Sinusfunktion, periodisch, das heißt, dass sich die einzelnen Abschnitte der Funktion wieder und wieder wiederholen. Die Periode wird der sich immer wieder wiederholende Abschnitt genannt. Bei der Veränderung des Faktors $\textcolor{green}{b}$ verändert sich auch die Periodenlänge der Funktion. Sie verkleinert sich bei einem Faktor zwischen $-1$ und $1$ und vergrößert sich bei Werten größer $1$ und kleiner $-1$. Hierbei ist das Vorzeichen vor dem Faktor jedoch egal, es gibt keinen Unterschied zwischen negativen und positiven Faktoren.

Die kleinste Periode berechnet man mit der Formel $p = | \frac{2 \pi}{b} | $

Kosinusfunktionen mit verschiedenen Periodenlaengen

Kosinusfunktionen mit verschiedenen Periodenlaengen

Merke

Die Periode gibt die Länge eines sich wiederholenden Abschnittes an. Er kann verlängert oder verkürzt werden.

Als allgemeine Gleichung einer Kosinusfunktion wird oft $f(x)$=$a$ · $cos (bx + c) + d$ bezeichnet.

Reelle Zahlen $a, b, c$ und $d$ haben folgende Effekte:

  • $a$ streckt entlang der $y$-Achse
  • $b$ beeinflusst die Periode
  • $c$ verschiebt entlang der $x$-Achse
  • $d$ verschiebt entlang der $y$-Achse

Ruhelage der Kosinusfunktion

Ein weiterer Fachbegriff bei Kosinusfunktionen ist die Ruhelage. Diese bildet den Mittelwert zwischen Hochpunkt und Tiefpunkt. Sie wird als Gerade dargestellt. Bei keiner Verschiebung der Funktion in Richtung der y-Achse entspricht die x-Achse der Ruhelage. 

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welchen Streckungsfaktor hat die blaue Kosinusfunktion in der folgenden Abbildung?

Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden

Teste dein Wissen!

Wie ändert sich die Periodenlänge, wenn wir den Faktor $b$ verdoppeln?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was passiert mit der Amplitude einer Kosinusfunktion, wenn der Streckungsfaktor von $1$ auf $2$ erhöht wird?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie sieht die allgemeine Kosinusfunktion aus?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.05.2025
Alles zu bester Zufriedenheit!
09.05.2025
Sehr flexibel bezüglich Zeiten und Änderung von Fächern.
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7778