Wie bildet man eine Umkehrfunktion?

Mathematik > Funktionen
Wie bildet man eine Umkehrfunktion? | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Lerntext erklären wir dir, was eine Umkehrfunktion ist. Außerdem geben wir dir Beispiele, wie eine Umkehrfunktion gebildet werden kann und lösen Übungsaufgaben.

Definition einer Umkehrfunktion

Umkehrfunktionen ordnen, wie der Name schon sagt, die Variablen umgekehrt zu. Das bedeutet, dass $x$-Wert und $y$-Wert vertauscht werden. Dies ist nur möglich, wenn es für jeden Funktionswert ($y$) nur einen $x$-Wert gibt. Die umkehrbare (invertierbare) Funktion muss daher eineindeutig sein. Das heißt, dass unter Umständen der Definitionsbereich einer Funktion eingeschränkt werden muss, damit diese dann umkehrbar wird. Die Umkehrfunktion der Funktion $f(x)$ wird mit $f^{\textcolor{red}{-1}} (x)$ gekennzeichnet. Die hochgestellte $\textcolor{red}{-1}$ ist das Zeichen für die Umkehrfunktion.

Methode

Eine Umkehrfunktion wird durch $f^{-1}(x)$ gekennzeichnet.

Es gilt damit für jedes $x$ ∈ $D$$f$: $f$ $-1$ $(f(x))$ = $x$

Wenn wir die Graphen einer Funktion und ihrer Umkehrfunktion betrachten, fällt auf, dass die Funktion an der ersten Winkelhalbierenden gespiegelt wird. Diese Winkelhalbierende wird beschrieben durch die Funktion $g(x)= x$. Deren Graph halbiert den Winkel zwischen den Achsen im 1.Quadranten.

Umkehrfunktion2

Abbildung: Funktion $f(x) = 2x+2$ und ihre Umkehrfunktion

Die Abbildung zeigt die Funktionen $f$ und $f$-1, die Umkehrfunktionen voneinander sind, da sie Spiegelbilder voneinander an der Geraden $g(x) = x$ sind.

Schauen wir uns jetzt an, wie die Umkehrfunktion von $f(x) = 2x+2$ gebildet wurde:

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Vorgehensweise - eine Umkehrfunktion bilden

Um eine Umkehrfunktion zu bilden, muss die Funktion nach $x$ umgestellt werden. Es werden $x$ und $y$ vertauscht, wobei sich auch die Definitions- und die Wertemenge vertauschen.

Methode

Vorgehensweise

  • Die Funktion nach $x$ auflösen.
  • $x$ und $y$ tauschen.

Schauen wir uns drei Beispiele an:

Beispiel

$f(x)=2x+2$

Diese Funktion ist eindeutig, da sie eine Gerade darstellt. Wir müssen uns also keine Gedanken zum Definitionsbereich machen. Das sind alle reellen Zahlen.

1. Die Funktion nach x auflösen.

$f(x) = y = 2x+2~~~~~~~~~|-2$
$y-2=2x~~~~~~~~~~~~~~|:2$
$\frac{y}{2}-1=x$
$= 0,5y-1=x$

2. $x$ und $y$ tauschen.

$y = 0,5x -1$   bzw.    $f^{-1}(x) = 0,5x -1$

Probe:

$f$-1 ($f$($x$)) = $0,5 (2x +2) - 1$ = $x$

Es ergibt sich immer $x$. Also sind die beiden Funktionen Umkehrfunktionen voneinander.

Beispiel

$f(x)=3x^2+5$

Hier müssen wir den Definitionsbereich einschränken, da das Bild eine quadratische Parabel ist, die nicht eineindeutig ist. Die Parabel hat ihren Scheitelpunkt auf der $y$-Achse. Damit ist sie zum Beispiel für x≥0 umkehrbar. Dieser Parabelast ist eineindeutig. Der Definitionsbereich für diese Funktion seien also alle reellen Zahlen, die größer oder gleich Null sind. Den Wertebereich bilden alle reellen $y$-Werte, die größer oder gleich 5 sind, denn die Parabel ist nach oben offen und ihr Scheitelpunkt liegt bei 5 auf der $y$-Achse.

Definitionsbereich: $D$$f$: $x$ ∈ ℝ, $x$ ≥ 0

Wertebereich: $W$$f$: $y$ ∈ ℝ, $y$ ≥ 5

1. Die Funktion nach $x$ auflösen.

$f(x)= 3x^2+5~~~~~~~~~~~~|-5$

$\iff y-5 = 3x^2~~~~~~~~~~~~|:3$

$\iff \frac{y-5}{3}=x^2~~~~ ~~|\sqrt{~~}$

$\iff \sqrt{\frac{y-5}{3}}=x$

2. $x$ und $y$ tauschen.

$y = f^{-1}(x) = \sqrt{\frac{x-5}{3}} $

Bemerkung: Für den Parabelteil links vom Scheitelpunkt gilt: Dessen Umkehrfunktion ist $f$-1(x) = - $\sqrt{\frac{x-5}{3}} $

Beispiel

$f(x)=5x^3$

Auch hier müssen wir uns keine Gedanken über den Definitionsbereich machen, da die Funktion eineindeutig ist.

1. Die Funktion nach $x$ auflösen.

$f(x)=y =5x^3~~~~~~~~~~~~~|:5$

$\iff \frac{y~}{5~}=x^3~~~~~~~~~~~~~~~~~~~~~~~~~~~|\sqrt[3]{~~}$

An dieser Stelle müssen wir aufpassen. Wenn wir eine dritte Wurzel ziehen um die dritte Potenz zu beseitigen, dann sind deren Ergebnisse immer positiv oder Null. Das alles soll auch für negative Zahlen gelten. Für negative Werte muss also auch etwas Negatives dastehen. Da geht mit einer Fallunterscheidung:

$\iff \sqrt[3]{\frac{y~}{5~}}=x$, wenn $y$ ≥ 0 und -$ \sqrt[3]{\frac{- y~}{5~}}=x$, wenn $y$ < 0

2. $x$ und $y$ tauschen.

Die Umkehrfunktion lautet also:

$f^{-1}(x) = y= \sqrt[3~]{\frac{x~}{5~}}$, wenn $x$ ≥ $0$   und   $f^{-1}(x) = y= - \sqrt[3~]{\frac{- x~}{5~}}$, wenn $x$ < $0$

Anwendung Umkehrfunktion

Wann muss eine Umkehrfunktion gebildet werden?

Ein Beispiel aus der Wirtschaft: Normalerweise wird die Nachfrage nach einem Produkt in Abhängigkeit des Preises abgebildet. Man kann jedoch auch den Preis in Abhängigkeit der Nachfrage darstellen. Dies könnte einen Hersteller interessieren, der eine bestimmte Menge eines Produktes verkaufen möchte und wissen möchte, welchen Preis er pro Einheit verlangen sollte, um alle produzierten Einheiten zu verkaufen.

Mit den Übungsaufgaben kannst du dein neu erworbenes Wissen überprüfen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Berechne die Umkehrfunktion folgender Funktion:
$f(x) = \frac{2x+1}{3}$

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Eine Umkehrfunktion zu $f(x) = x^3+2$ mit eingeschränktem Definitionsbereich ist:

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die Umkehrfunktion von $f(x) = 2x-0,2$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie gehst du vor, um eine Umkehrfunktion zu bilden?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
31.05.2025
Super nettes Personal.. Hab schon das zweite Kind angemeldet, sie gehen auf die Bedürfnisse der Kinder ein.. Termine sind einfach und persönlich bzw telefonisch sehr gut zu organisieren. Fr. Wagner in Rosenheim ist wirklich sehr bemüht und in allem zu helfen. Kann ich nur empfehlen!!!
31.05.2025
Meinem Sohn hat es sehr gut geholfen, das er in mathe das Thema dank ihres Lehrers kapiert hat. Vielen Dank
18.05.2025
Alles zu bester Zufriedenheit!

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7753