Wie wende ich die Kettenregel an?
Die verschiedenen Ableitungsregeln
Es gibt einige Ableitungsregeln, die du kennen solltest, wenn du in der Lage sein möchtest, verschiedene Funktionen abzuleiten. Hier erhältst du eine Übersicht, welche Regeln der Ableitung existieren. Über die jeweiligen Begriffe gelangst du auf die dazugehörigen Lernseiten:
Merke
In diesem Lerntext lernst du die Kettenregel als neue Ableitungsregel kennen.
Merke
$f(x)= u(v(x))$
$f'(x)= u'(v(x)) \cdot v'(x)$
Um die Kettenregel verstehen zu können, musst du die Potenzregel, die Faktorregel und die Summenregel beherrschen. Wenn du dir bei diesen Regeln unsicher bist, gucke sie dir lieber vorher noch einmal an.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Ableitung mit der Kettenregel: Anwendung
Die Kettenregel ist eine wichtige Regel, mit deren Hilfe du komplexe $_"$verkettete$"$ Funktionen ableiten kannst. Die Kettenregel tritt vor allem in Kombination mit anderen Regeln, etwa der Faktorregel oder der Summenregel, auf. Ein Beispiel für die Anwendung der Kettenregel ist diese Funktion:
$\large{f(x)= (x^2)^3}$
Wir wollen die Kettenregel demonstrieren, daher rechnen wir die Exponenten nicht zusammen. Zunächst müssen wir die beiden Funktionsteile u(x) und v(x) definieren, denn die Kettenregel besagt, dass:
$f(x) = \textcolor{green}{u(}\textcolor{blue}{v(x)}\textcolor{green}{)}$
Bei unserem Beispiel ist der Funktionsteil $\textcolor{blue}{x^2}$ der Teil $\textcolor{blue}{v(x)}$ und der Funktionsteil $\textcolor{green}{()^3}$ der Teil $\textcolor{green}{u(x)}$, also:
$f(x) = \textcolor{green}{(}\textcolor{blue}{x^2}\textcolor{green}{)^3}$
Nun gucken wir uns nochmal die Ableitungsformel $f'(x)= \textcolor{green}{u'(}\textcolor{blue}{v(x)\textcolor{green}{)} \cdot v'(x)}$ an. Wir müssen also zunächst die Ableitungen der einzelnen Funktionsteile berechnen und diese dann zur Ableitungsfunktion zusammenfügen.
Wir bilden also die Ableitungen der einzelnen Funktionsteile:
- $\textcolor{blue}{v'(x)= 2x}$, v(x) wird auch als innere Funktion bezeichnet.
- $\textcolor{green}{u'(x)= 3 \cdot ()^2}$, u(x) wird auch als äußere Funktion bezeichnet.
Nach dem Zusammenfügen erhalten wir:
$f'(x)= 3 \cdot (x^2)^2 \cdot 2x$
Diesen Term können wir noch vereinfachen und erhalten dann:
$f'(x)= 6 \cdot x^5$
Im Übrigen hätten wir die Funktion auch erst zusammenfassen können und dann mit Hilfe der Potenzregel ableiten können. Also:
${f(x)= (x^2)^3}~~~\rightarrow~~~{f(x)= x^6}$
${f'(x)= 6 \cdot x^5}$
Kettenregel: Beispiel
Eine weitere Beispielaufgabe für die Kettenregel, in Verbindung mit der Summenregel, ist die Funktion:
$g(x)= \textcolor{green}{(} \textcolor{blue}{3x-2} \textcolor{green}{)^8}$
Die Ableitung der äußeren Funktion ist: $\textcolor{green}{u'(x)=8 \cdot ()^7}$
Die Ableitung der inneren Funktion ist: $\textcolor{blue}{v'(x)= 3}$
Zusammengefügt nach der Kettenregel ergibt dies die Ableitung der Funktion:
$g'(x)= \textcolor{green}{8 \cdot (}\textcolor{blue}{3x-2}\textcolor{green}{)^7} \cdot 3$
Vereinfachen wir diesen Term, erhalten wir: $g'(x)= 24 \cdot (3x-2)^7$
Zur Vertiefung des Themas schau auch noch einmal in die Übungen zu Kettenregeln.
Teste dein Wissen!
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Hol dir Hilfe beim Studienkreis!
Selbst-Lernportal Online
Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!
- Online-Chat 14-20 Uhr
- 700 Lerntexte & Videos
- Über 250.000 Übungsaufgaben
Einzelnachhilfe Online
Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!
- Online-Nachhilfe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Nachhilfe in deiner Nähe
Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Nachhilfe in deiner Nähe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer