Mathematik > Funktionen

Sinusfunktion und ihre Eigenschaften

Inhaltsverzeichnis:

In diesem Lerntext erhältst du einen Überblick über die Eigenschaften der Sinusfunktion. Außerdem erklären wir dir, wie du die Sinuskurve in x- oder y-Richtung verschieben kannst.

Allgemeine Funktionsgleichung

Die Sinusfunktion ist eine der trigonometrischen Funktionen und ordnet jedem $x$ seinen entsprechenden Sinuswert $y$ zu.

Merke

Merke

Hier klicken zum Ausklappen

$y~=~sin(x)$

Die Sinusfunktion besitzt einige Besonderheiten. Für die Skalierung der x-Achse nutzt man auf Grund des geometrischen Hintergrunds der Sinusfunktion das Bogenmaß. Außerdem verläuft die Sinusfunktion periodisch.

Die Sinusfunktion
Die Sinusfunktion

Definitions- und Wertemenge der Sinusfunktion

Für die x-Werte der Sinusfunktion sind alle reellen Zahlen erlaubt. Die Definitionsmenge lautet also:

$\mathbb{D} = \mathbb{R}$

Im Gegensatz zu den x-Werten, können die y-Werte, wie du in der Abbildung ablesen kannst, nur Werte zwischen $-1$ und $1$ annehmen. Der Wertebereich der normalen Sinusfunktion lautet also:

$W= [-1;1]$

Periode und Symmetrieverhalten der Sinuskurve

Die Sinuskurve verläuft periodisch, das heißt, dass sich ein einzelner Abschnitt wieder und wieder wiederholt. Man kann auch sagen, dass sich die Funktionswerte ($y$) im selben Abstand wiederholen. Eine Periode der Sinuskurve entspricht einer Wellenbewegung oberhalb und unterhalb der x-Achse. In der unteren Abbildung können wir erkennen, dass eine Periode über die Länge von $2 \pi$ geht.

Periode einer Sinuskurve
Periode einer Sinuskurve

Die Sinusfunktion ist außerdem punktsymmetrisch zum Ursprung $(0|0)$, was sich auch rechnerisch beweisen lässt.

$sin(-x) = - sin (x)$

Wenn du nicht mehr genau weißt, wie du die Symmetrie einer Funktion rechnerisch beweisen kannst, findest du in unserem Lerntext zu Kurvendiskussionen eine ausführliche Erklärung.

Nullstellen der Sinusfunktion

Aufgrund ihres periodischen Verlaufs entlang der x-Achse, besitzt die Sinusfunktion unendlich viele Nullstellen, die jeweils um den Wert $\pi$ auseinander liegen.

Nullstellen der Sinusfunktion
Nullstellen der Sinusfunktion

Merke

Merke

Hier klicken zum Ausklappen

Für die Berechnung der Nullstellen der Sinusfunktion gilt:

$x_k = k \cdot \pi$

Dabei können für $k$ alle möglichen ganzen Zahlen eingesetzt werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x_{-1} = (-1) \cdot \pi = - \pi$

$x_{0} = (0) \cdot \pi = 0$

$x_{2} = (2) \cdot \pi = 2 \pi$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Relative Maxima und Minima

Auch für die Extremwerte (oder auch: Hoch- und Tiefpunkte) lässt sich aufgrund des periodischen Verlaufs der Sinuskurve eine allgemeine Formel angeben.

Merke

Merke

Hier klicken zum Ausklappen

Relative Maxima

$x_k = \frac{\pi}{2} + k \cdot 2 \cdot \pi$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x_{-1} = \frac{\pi}{2} + (-1) \cdot 2 \cdot \pi = - \frac{3 \cdot \pi}{2}$

$x_1 = \frac{\pi}{2} + 1 \cdot 2 \cdot \pi = \frac{5 \cdot \pi}{2} $

Merke

Merke

Hier klicken zum Ausklappen

Relative Minima

$x_k = \frac{3 \cdot \pi}{2} + k \cdot 2 \cdot \pi$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x_{-1} = \frac{3 \cdot \pi}{2} + (-1) \cdot 2 \cdot \pi = - \frac{\pi}{2}$

$x_{1} = \frac{3 \cdot \pi}{2} + 1 \cdot 2 \cdot \pi = - \frac{7 \cdot \pi}{2}$

Verschiebung in y-Richtung

Die Sinusfunktion wird entlang der y-Achse verschoben, wenn ein Wert zum Funktionsterm dazu addiert oder davon abgezogen wird. Dabei verschiebt sich die Sinuskurve entlang der y-Achse in positive oder negative Richtung.

Merke

Merke

Hier klicken zum Ausklappen

$y = sin(x) + d$

Der Parameter $d$ verschiebt die Sinuskurve entlang der y-Achse.

$d>0 \rightarrow$ Verschiebung nach oben

Verschiebung der Sinuskurve entlang der y-Achse
Verschiebung der Sinuskurve entlang der y-Achse

Bei der Verschiebung in y-Richtung ist zu beachten, dass die verschobenen Sinuskurven keine Nullstellen, also keine Schnittpunkte mit der x-Achse, besitzen. Die x-Koordinaten der Maxima und Minima ändern sich nicht.

Verschiebung in x-Richtung

Die Sinuskurve kann ebenfalls entlang der x-Achse verschoben werden.

Merke

Merke

Hier klicken zum Ausklappen

$y = sin(x + c)$

Der Parameter $c$ verschiebt die Sinuskurve entlang der x-Achse.

$c>0 \rightarrow$ Verschiebung nach rechts

Verschiebung der Sinuskurve entlang der x-Achse
Verschiebung der Sinuskurve entlang der x-Achse

Bei der Verschiebung entlang der x-Achse ändern sich sowohl Null- als auch Extremstellen der Sinusfunktion. Außerdem ist die Verschiebung immer nur innerhalb einer Periode ($2\cdot \pi$) sichtbar. Wird die Sinuskurve beispielsweise um $2 \pi$ nach links verschoben, kann man diese Verschiebung nicht sehen, da die Kurve wieder deckungsgleich mit der normalen Form ist.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die Extremstelle (Maximum) einer Sinusfunktion für $x_{10}$.

Welches Ergebnis ist korrekt?

Teste dein Wissen!

Berechne die Nullstelle der Sinusfunktion für $x_7$.

Welches Ergebnis ist korrekt?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Eigenschaften treffen auf die Sinusfunktion zu?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Skalierung auf der x-Achse nutzt man in der Regel beim Zeichnen der Sinusfunktion?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-12
Die Beratung war ehrlich und sehr freundlich, es wurde auf die Bedürfnisse meiner Tochter eingegangen. Sie wurde in das Beratungsgespräch eingebunden. Sie fühlt sich in den Nachhilfestunden ernst genommen und sehr wohl. Sie geht gerne zur Nachhilfe.
Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7779