Online Lernen | Mathematik Aufgaben | Funktionen Trigonometrische Funktionen Sinusfunktion und ihre Eigenschaften

Sinusfunktion und ihre Eigenschaften

In diesem Lerntext erhältst du einen Überblick über die Eigenschaften der Sinusfunktion. Außerdem erklären wir dir, wie du die Sinuskurve in x- oder y-Richtung verschieben kannst.

Allgemeine Funktionsgleichung

Die Sinusfunktion ist eine der trigonometrischen Funktionen und ordnet jedem $x$ seinen entsprechenden Sinuswert $y$ zu.

Merke

Merke

Hier klicken zum Ausklappen

$y~=~sin(x)$

Die Sinusfunktion besitzt einige Besonderheiten. Für die Skalierung der x-Achse nutzt man auf Grund des geometrischen Hintergrunds der Sinusfunktion das Bogenmaß. Außerdem verläuft die Sinusfunktion periodisch.

Die Sinusfunktion
Die Sinusfunktion

Definitions- und Wertemenge der Sinusfunktion

Für die x-Werte der Sinusfunktion sind alle reellen Zahlen erlaubt. Die Definitionsmenge lautet also:

$\mathbb{D} = \mathbb{R}$

Im Gegensatz zu den x-Werten, können die y-Werte, wie du in der Abbildung ablesen kannst, nur Werte zwischen $-1$ und $1$ annehmen. Der Wertebereich der normalen Sinusfunktion lautet also:

$W= [-1;1]$

Periode und Symmetrieverhalten der Sinuskurve

Die Sinuskurve verläuft periodisch, das heißt, dass sich ein einzelner Abschnitt wieder und wieder wiederholt. Man kann auch sagen, dass sich die Funktionswerte ($y$) im selben Abstand wiederholen. Eine Periode der Sinuskurve entspricht einer Wellenbewegung oberhalb und unterhalb der x-Achse. In der unteren Abbildung können wir erkennen, dass eine Periode über die Länge von $2 \pi$ geht.

Periode einer Sinuskurve
Periode einer Sinuskurve

Die Sinusfunktion ist außerdem punktsymmetrisch zum Ursprung $(0|0)$, was sich auch rechnerisch beweisen lässt.

$sin(-x) = - sin (x)$

Wenn du nicht mehr genau weißt, wie du die Symmetrie einer Funktion rechnerisch beweisen kannst, findest du in unserem Lerntext zu Kurvendiskussionen eine ausführliche Erklärung.

Nullstellen der Sinusfunktion

Aufgrund ihres periodischen Verlaufs entlang der x-Achse, besitzt die Sinusfunktion unendlich viele Nullstellen, die jeweils um den Wert $\pi$ auseinander liegen.

Nullstellen der Sinusfunktion
Nullstellen der Sinusfunktion

Merke

Merke

Hier klicken zum Ausklappen

Für die Berechnung der Nullstellen der Sinusfunktion gilt:

$x_k = k \cdot \pi$

Dabei können für $k$ alle möglichen ganzen Zahlen eingesetzt werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x_{-1} = (-1) \cdot \pi = - \pi$

$x_{0} = (0) \cdot \pi = 0$

$x_{2} = (2) \cdot \pi = 2 \pi$

Relative Maxima und Minima

Auch für die Extremwerte (oder auch: Hoch- und Tiefpunkte) lässt sich aufgrund des periodischen Verlaufs der Sinuskurve eine allgemeine Formel angeben.

Merke

Merke

Hier klicken zum Ausklappen

Relative Maxima

$x_k = \frac{\pi}{2} + k \cdot 2 \cdot \pi$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x_{-1} = \frac{\pi}{2} + (-1) \cdot 2 \cdot \pi = - \frac{3 \cdot \pi}{2}$

$x_1 = \frac{\pi}{2} + 1 \cdot 2 \cdot \pi = \frac{5 \cdot \pi}{2} $

Merke

Merke

Hier klicken zum Ausklappen

Relative Minima

$x_k = \frac{3 \cdot \pi}{2} + k \cdot 2 \cdot \pi$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$x_{-1} = \frac{3 \cdot \pi}{2} + (-1) \cdot 2 \cdot \pi = - \frac{\pi}{2}$

$x_{1} = \frac{3 \cdot \pi}{2} + 1 \cdot 2 \cdot \pi = - \frac{7 \cdot \pi}{2}$

Verschiebung in y-Richtung

Die Sinusfunktion wird entlang der y-Achse verschoben, wenn ein Wert zum Funktionsterm dazu addiert oder davon abgezogen wird. Dabei verschiebt sich die Sinuskurve entlang der y-Achse in positive oder negative Richtung.

Merke

Merke

Hier klicken zum Ausklappen

$y = sin(x) + d$

Der Parameter $d$ verschiebt die Sinuskurve entlang der y-Achse.

$d>0 \rightarrow$ Verschiebung nach oben

Verschiebung der Sinuskurve entlang der y-Achse
Verschiebung der Sinuskurve entlang der y-Achse

Bei der Verschiebung in y-Richtung ist zu beachten, dass die verschobenen Sinuskurven keine Nullstellen, also keine Schnittpunkte mit der x-Achse, besitzen. Die x-Koordinaten der Maxima und Minima ändern sich nicht.

Verschiebung in x-Richtung

Die Sinuskurve kann ebenfalls entlang der x-Achse verschoben werden.

Merke

Merke

Hier klicken zum Ausklappen

$y = sin(x + c)$

Der Parameter $c$ verschiebt die Sinuskurve entlang der x-Achse.

$c>0 \rightarrow$ Verschiebung nach rechts

Verschiebung der Sinuskurve entlang der x-Achse
Verschiebung der Sinuskurve entlang der x-Achse

Bei der Verschiebung entlang der x-Achse ändern sich sowohl Null- als auch Extremstellen der Sinusfunktion. Außerdem ist die Verschiebung immer nur innerhalb einer Periode ($2\cdot \pi$) sichtbar. Wird die Sinuskurve beispielsweise um $2 \pi$ nach links verschoben, kann man diese Verschiebung nicht sehen, da die Kurve wieder deckungsgleich mit der normalen Form ist.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7779