Quadratische Funktionen: Aufgaben mit Lösungen

Mathematik > Funktionen
Quadratische Funktionen: Aufgaben mit Lösungen! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Im folgenden Lerntext bearbeiten wir eine realitätsnahe Textaufgabe zum Thema quadratische Funktionen. Hierbei zeigen wir Schritt für Schritt, wie du solche Textaufgaben zu quadratischen Funktionen meistern kannst.

Quadratische Funktionen - Textaufgabe

Der Bogen einer Hängebrücke von der Form einer Parabel verläuft gemäß dem Graphen der Funktion $f(x) = -0,004x^2+1,2x-32,4$.
Die Verankerungspunkte der Brücke liegen unterhalb der durch die x-Achse markierten Straße. Im Koordinatensystem stellt eine Einheit dabei einen Meter in der Realität dar. Dabei beschreibt der x-Wert die Länge der Brücke und der y-Wert deren Höhe.

textaufgabe-1

a) Wie hoch ist die Brücke (von der Straße aus gemessen)?

b) Wie lang ist die Straße auf der Brücke (Abstand $\overline{AB}$)?

c) Wie tief unterhalb der Straße befindet sich der Verankerungspunkt ($C$) der Brücke?

Im nächsten Teilkapitel erklären wir die Lösungen und gehen die einzelnen Lösungswege durch. Versuche zuerst allein die Lösung herauszufinden und schaue dann erst auf die Lösungen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Quadratische Funktionen - Lösungen der Aufgaben

a) Wie hoch ist die Brücke (von der Straße aus gemessen)?

Die Höhe der Brücke von der Straße aus gemessen ist gesucht. Der höchste Punkt der Hängebrücke ist der Scheitelpunkt der Funktion. $\rightarrow S$ ist gesucht.
Wir haben die Gleichung der Funktion gegeben: $f(x) = -0,004x^2+1,2x-32,4$

Um den Scheitelpunkt herauszufinden, formen wir die Allgemeine Form in die Scheitelpunktform um.
Das geht so:

$f(x) = -0,004x^2+1,2x-32,4$

1. -0,004 ausklammern:
$f(x) = -0,004\cdot(x^2-300x)-32,4$

2. Quadratische Ergänzung bilden:
$f(x) = -0,004\cdot(x^2-300x+(\frac{300}{2})^2-(\frac{300}{2})^2)-32,4$
$f(x) = -0,004\cdot(x^2-300x+22500-22500)-32,4$

3. Negativen Wert ausklammern und mit der vorderen Zahl (hier -0,0004) mal rechnen:
$f(x) = -0,004\cdot(x^2-300x+22500)-0,004\cdot(-22500)-32,4$
$f(x) = -0,004\cdot(x^2-300x+22500)+90-32,4$

4. Werte verrechnen:
$f(x) = -0,004\cdot(x^2-300x+22500)+57,6$

5. Binomische Formel anwenden:
$f(x) = -0,004\cdot(x-150)^2+57,6$

Scheitelpunktform: $f(x) = -0,004\cdot(x-150)^2+57,6$

Nun muss nur noch der Scheitelpunkt, den wir bei der Aufgabe berechnet haben, abgelesen werden.
$f(x) = a\cdot(x−\textcolor{blue}d)^2+\textcolor{green}e$
Scheitelpunkt: S $(\textcolor{blue}d/\textcolor{green}e)$

Der Scheitelpunkt der Funktion liegt also bei: $S(150/57,6)$. Hier liegt auch der höchste Punkt der Brücke. Demnach beträgt die Höhe der Brücke über der Fahrbahn $57,6 m$.

Bei Schwierigkeiten beim Umformen von der Allgemeinen Form oder auch der Normalform in die Scheitelpunktform, schaue im Lerntext Normalform noch einmal nach.

b) Wie lang ist die Straße auf der Brücke (Abstand $\overline{AB}$)?

Die Länge der Straße bzw. der Abstand zwischen Punkt $A$ und $B$ ist gesucht.
Dafür müssen wir die Werte der Punkte $A$ und $B$ ermitteln. Wenn wir uns die Abbildung genauer anschauen, erkennen wir, dass $A$ und $B$ die Nullstellen der Funktion sind.
$\rightarrow$ Wir müssen bei der Aufgabe zu quadratischen Funktionen die Nullstellen ermitteln und dann den Abstand zwischen den beiden Nullstellen berechnen.

$f(x) = -0,004x^2+1,2x-32,4=0$
Nun können wir mit der p-q-Formel oder mit der Mitternachtsformel die Nullstellen bestimmen. Wir werden schrittweise die pq-Formel verwenden:

$f(x) = -0,004x^2+1,2x-32,4=0$         $|:(-0,004)$

$f(x) = x^2-300x+8100=0$
$p=-300$
$q=8100$

$x_{1/2} = -\frac{p}{2}\pm \sqrt{(\frac{p}{2})^2-{q}}$

$x_{1/2} = -\frac{-300}{2}\pm \sqrt{(\frac{-300}{2})^2-{8100}}$

$x_{1/2} = 150\pm \sqrt{22500-8100}$

$x_{1/2} = 150\pm \sqrt{22500-8100}$

$x_{1/2} = 150\pm \sqrt{14400}$

$x_{1/2} = 150\pm120$

$x_1 = 150+120=270$

$x_2 = 150-120=30$

Nun haben wir die zwei Nullstellen gefunden. Der Abstand zwischen dem Punkt $A (30/0)$ und Punkt $B (270/0)$ beträgt $240m$.  ($270m-30m=240m$)
Damit ist die Straße auf der Brücke $240m$ lang.

c) Wie tief unterhalb der Straße befindet sich der Verankerungspunkt ($C$) der Brücke?

Die Tiefe des Verankerungspunkts $C$ soll herausgefunden werden. Dafür müssen wir den y-Wert des Punktes $C$ ermitteln. Wir sehen, dass der Punkt $C$ auf der y-Achse liegt, bzw. die Funktion die y-Achse im Punkt $C$ schneidet. Wir müssen also den y-Achsenabschnitt herausfinden. Da wir die Allgemeine Form gegeben haben, können wir den Wert einfach ablesen. Es ist der Wert der nicht mit $x$ oder $x^2$ mal genommen wird.

$f(x) = -0,004x^2+1,2x\textcolor{red}{-32,4}$

Die Funktion schneidet die y-Achse, wenn der x Wert gleich null ist.

$f(x) = -0,004x^2+1,2x-32,4$
$f(0) = -0,004\cdot0^2+1,2\cdot0-32,4$
$f(0) = -32,4$

Der Verankerungspunkt befindet sich $32,4m$ unterhalb der Straße.

Du hast jetzt eine Beispielaufgabe zu den quadratischen Funktionen durchgerechnet. Verbessere dein Können auch mit unseren Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Ein Mädchen gießt eine Blume. Der Wasserstrahl hat die Form einer Parabel der Funktion $f(x) = -0,2x^2+2x $. Der Strahl trifft die Blume im Ursprung (Punkt (0/0)). Der Boden ist die x-Achse.

In welche Höhe hält das Mädchen den Wasserschlauch? 

textaufgabe-uebung-1

Teste dein Wissen!

Je höher ein Feuerwerkskörper fliegen kann, umso teurer kann er verkauft werden. Daher will das Untermehmen "Fireworks" eine neue Rakete entwickeln.
Diese Rakete hat die Flugbahn $f(x) = -0,488x^2+24,4x+0,5$.
Das $y$ beschreibt die Höhe und $x$ die horizontale Entfernung.
Das Unternehmen verspricht, dass die Raktete mindestens 300m hoch fliegt.
Stimmt diese Angabe?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Die Flugbahn eines Balls ähnelt der Funktion $f(x) = -0,00625(x-20)^2+2,5$.
Der Abschusspunkt ist der Ursprung.
X entspricht der horizontalen Entfernung vom Abschusspunkt und y entspricht der Höhe des Balls. 1 Einheit = 1 Meter

Was ist die höchste Stelle, die der Ball erreicht?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Ein Ingeneur soll den Graphen bestimmen, der durch die Punkte:
A (2/1)
B (-1/4)
C (0/-1) 
läuft.
Welcher der folgenden Graphen ist korrekt?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8569