Mathematik > Funktionen

Exponentialfunktionen: Erklärung und Aufgaben

Inhaltsverzeichnis:

Die Exponentialfunktionen sind, wie der Name schon vermuten lässt, Funktionen, bei denen es insbesondere um den Exponenten geht. Die Besonderheit einer Exponentialfunktion besteht darin, dass die Variable, also das $x$, im Exponenten steht. Beispiele hierfür sind:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = 4^x$

$f(x) = 5^{x-2}$

$f(x) = 2 \cdot (\frac{1}{3})^x$

$f(x) = -8 \cdot 2^{x+5} + 3$

Eigenschaften

Die allgemeine Funktionsgleichung einer Exponentialfunktion lautet:

$f(x) = a^x$

Die Variable ($x$) steht im Exponenten. Die Basis (a) muss eine positive reelle Zahl sein ($a \in \mathbb{R}$, $a > 0$, $a \neq 1$). Wir unterscheiden zwei Arten von Exponentialfunktionen: Exponentialfunktionen deren Basis größer als $1$ ist und Exponentialfunktionen deren Basis zwischen $0$ und $1$ liegt.

1. Fall: $a > 1$

Die Basis der Exponentialfunktion ist größer als $1$. Dies bedeutet, dass der Graph der Exponentialfunktion steigend verläuft. Je größer $a$, desto steiler verläuft der Graph. Folgend ein paar Beispiele:

Beispiel für steigende Exponentialfunktionen
Abbildung: $\textcolor{green}{f(x)=2^x}$, $\textcolor{blue}{g(x)=3^x}$, $\textcolor{orange}{h(x)=5^x}$, $\textcolor{yellowgreen}{i(x)=10^x}$

2. Fall: $0 < a < 1$

Die Basis der Exponentialfunktion ist größer als $0$ und kleiner als $1$. Dies bedeutet, dass der Graph der Exponentialfunktion fallend verläuft. Je kleiner $a$, desto steiler verläuft der Graph. Folgend ein paar Beispiele:

Beispiel für fallende Exponentialfunktionen
Abbildung: $\textcolor{green}{f(x)=(\frac{1}{2})^x}$, $\textcolor{blue}{g(x)=(\frac{1}{3})^x}$, $\textcolor{orange}{h(x)=(\frac{1}{5})^x}$, $\textcolor{yellowgreen}{i(x)=(\frac{1}{10})^x}$

Wenn wir uns die Graphen der Exponentialfunktionen
$f(x) = 3^x$ und $g(x) = (\frac{1}{3})^x$
sowie
$h(x) = (\frac{7}{4})^x$ und $i(x) = (\frac{4}{7})^x$
einmal im Vergleich angucken, stellen wir fest, dass die Graphen jeweils durch Spiegelung an der y-Achse aufeinander abgebildet werden. Das heißt, wenn wir den Kehrwert der Basis a bilden und als Basis einer zweiten Exponentialfunktion nehmen, bewirkt dies, dass wir den Graphen der Exponentialfunktion an der y-Achse spiegeln.

Beispiel für gespiegelte Exponentialfunktionen
Abbildung: $\textcolor{green}{f(x)=3^x}$, $\textcolor{yellowgreen}{g(x)=(\frac{1}{3})^x}$, $\textcolor{blue}{h(x)=(\frac{7}{4})^x}$, $\textcolor{skyblue}{i(x)=(\frac{4}{7})^x}$

Methode

Methode

Hier klicken zum Ausklappen

Der Kehrwert einer Zahl wird gebildet, indem wir Zähler und Nenner der Zahl vertauschen.
Ein paar Beispiele:

$\frac{2}{5} ~~ \rightarrow ~~$ Kehrwert: $\frac{5}{2}$

$\frac{1}{3} ~~ \rightarrow ~~$ Kehrwert: $\frac{3}{1} = 3$

$4 (=\frac{4}{1}) ~~ \rightarrow ~~$ Kehrwert: $\frac{1}{4}$

Merke

Merke

Hier klicken zum Ausklappen

Für alle Exponentialfunktionen der Form $f(x) = a^x$ gilt:

Die x-Achse ist Asymptote für den Graphen.
Der Graph der Funktion zeigt kein Symmetrieverhalten.
Die Funktion hat keine Nullstellen.
Der Funktionsgraph geht durch den Punkt $P(0\mid1)$.
Der Funktionsgraph verläuft steigend bei $a > 1$ und fallend bei $0 < a < 1$.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Streckung parallel zur y-Achse und Spiegelung an der x-Achse

Die Funktionsgleichung einer Exponentialfunktion kann durch einen Streckfaktor ($b$) erweitert werden. Die Funktionsgleichung wird dann folgend geschrieben:

$f(x) = b \cdot a^x$

Der Streckfaktor ($b$) bewirkt, dass der Graph parallel zur y-Achse gestreckt wird. Der Funktionswert wird hierbei mit dem Streckfaktor $b$ multipliziert. Wenn der Streckfaktor ($b$) negativ ist, bewirkt dies, dass der Graph außerdem an der x-Achse gespiegelt wird.

Wir nehmen als Beispiel die Funktion $\textcolor{blue}{f(x) = 2^x}$.

Zunächst strecken wir diese parallel zur y-Achse mit dem Streckfaktor $\textcolor{red}{b = 3}$. Es entsteht die Funktion $\textcolor{red}{g(x) = 3 \cdot 2^x}$. Der Funktionsgraph schneidet die y-Achse bei $P(0 \mid 3)$ und verläuft insgesamt etwas $\textcolor{red}{steiler}$ als der Graph der Funktion $f(x)$.

Wir können die Funktion jedoch auch mit einem Streckfaktor, der zwischen $0$ und $1$ liegt, strecken. Wenn wir die Funktion mit dem Streckfaktor $\textcolor{green}{b = 0,5}$ strecken, entsteht die Funktion $\textcolor{green}{i(x) = 0,5 \cdot 2^x}$. Der Graph schneidet die y-Achse bei $P(0 \mid 0,5)$ und verläuft insgesamt etwas $\textcolor{green}{flacher}$ als der Graph der Funktion $f(x)$.

Wenn wir die Funktion mit einem negativen Streckfaktor strecken, wird der Graph zusätzlich zur Streckung an der x-Achse gespiegelt (siehe Graphik).

Beispiel für eine Exponentialfunktion, die parallel zur y-Achse gestreckt und an der x-Achse gespiegelt wird
Die Funktion $f(x)=2^x$ wird parallel zur y-Achse gestreckt. Ein negativer Streckfaktor bewirkt, dass der Graph der Funktion zusätzlich an der x-Achse gespiegelt wird.

Verschiebung entlang der x-Achse

Der Graph einer Exponentialfunktion kann entlang der x-Achse verschoben werden. Die Verschiebungskonstante ($c$) bewirkt eine Verschiebung des Graphen um $c$ Einheiten parallel zur x-Achse. Wenn $c$ positiv ist, ist der Graph nach links verschoben und wenn $c$ negativ ist, ist der Graph nach rechts verschoben. Die Funktionsgleichung wird dann folgend geschrieben:

$f(x)=a^{x+c}$

Hier ein paar Beispiele:

$\textcolor{blue}{f(x)=2^x}$
$\textcolor{limegreen}{g(x)=2^{x+3}}$
$\textcolor{orange}{h(x)=2^{x-4}}$

Verschiebung des Graphen der Exponentialfunktion parallel zur x-Achse
Abbildung: Verschiebung parallel zur x-Achse

Verschiebung entlang der y-Achse

Der Graph einer Exponentialfunktion kann entlang der y-Achse verschoben werden. Die Verschiebungskonstante ($d$) bewirkt eine Verschiebung des Graphen um $d$ Einheiten parallel zur y-Achse. Wenn $d$ positiv ist, ist der Graph nach oben verschoben und wenn $d$ negativ ist, ist der Graph nach unten verschoben. Die Funktionsgleichung wird dann wie folgt geschrieben:

$f(x) = a^x + d$

Hier ein paar Beispiele:

$\textcolor{blue}{f(x)=2^x}$
$\textcolor{green}{g(x)=2^x + 4}$
$\textcolor{orange}{h(x)=2^x - 3}$

Verschiebung des Graphen der Exponentialfunktion parallel zur y-Achse
Abbildung: Verschiebung parallel zur y-Achse

Zusatz: Kombinationen

Die oben beschriebenen Streckungen und Verschiebungen können natürlich auch kombiniert werden.
Hierzu abschließend noch drei Beispiele:

$\textcolor{blue}{f(x)=2^x}$
$\textcolor{green}{g(x)=3 \cdot 2^x - 2}$
$\textcolor{orange}{h(x)=2^{x-2} + 3}$
$\textcolor{magenta}{i(x)=-2^x + 1}$

Beispiele für Kombinationen von Streckung und Verschiebung der Exponentialfunktionen
Abbildung: „schwierige" Exponentialfunktionen

Teste dein neu erlerntes Wissen nun mit unseren Übungsaufgaben. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Entscheide, wie der Graph der Funktion $f(x)=2^x$ verschoben wurde, um zum Graphen der Funktion $c(x)=2^{x+1}-4$ zu werden.

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Kreuze die richtigen Eigenschaften der folgenden Funktion an: $h(x)= 6^x$

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Kreuze die richtigen Eigenschaften der folgenden Funktion an: $g(x)=0,4^x$

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Entscheide, wie der Graph der Funktion $f(x)=4^x$ verändert wurde, um zum Graphen der Funktion $g(x)=-4^x+5$ zu werden.

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7748