Scheitelpunktform einer quadratischen Funktion

Mathematik > Funktionen
Scheitelpunktform einer quadratischen Funktion! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Quadratische Funktionen können in verschiedenen Formen angegeben werden, unter anderem in der allgemeinen Form und in der Scheitelpunktform. Der Vorteil bei der Scheitelpunktform besteht darin, dass der Scheitelpunkt direkt aus der Form abgelesen werden kann. Wir können die Scheitelpunktform in die allgemeine Form umformen und umgekehrt.

Definition der Scheitelpunktform

Eine quadratische Funktion in der Scheitelpunktform sieht allgemein so aus:

Merke

Für beliebige reelle Zahlen $a$, $d$ und $e$ mit $a$ ungleich Null gilt:

$f(x) = \textcolor{red}a\cdot(x−\textcolor{blue}d)^2+\textcolor{green}e$

Streckfaktor: $\textcolor{red}a$
Scheitelpunkt: S $(\textcolor{blue}d|\textcolor{green}e)$

Du kannst aus der Form direkt den Scheitelpunkt ablesen. Das $a$ steht für den Streckfaktor.

Gut zu wissen

Hinweis

In euren Mathematikbüchern wird die Scheitelpunktform manchmal auch Scheitelform genannt. Die beiden Wörter bedeuten das Gleiche. Lass dich davon also nicht irritieren.

Umformung von der Scheitelpunktform in die allgemeine Form

Du kannst die Scheitelpunktform in die allgemeine Form umformen. Dies kannst du z. B. machen, wenn du den y-Achsenabschnitt herausfinden willst, aber die Scheitelpunktform gegeben hast.

$ f(x)=a⋅(x−d)^2+e     \rightarrow     f(x)=a⋅x^2+b⋅x+c$ 

Hier ist eine Anleitung, wie du vorgehen kannst: 

Methode

1) Binomische Formel anwenden
Zunächst muss die quadrierte Klammer aufgelöst werden. Um diese Klammer aufzulösen, musst du die 1. oder 2. Binomische Formel anwenden. (Hier verwendest du die 2. Binomische Formel, da in der Klammer ein Minus steht.)
$ f(x)=a⋅(x−d)^2+e$
$ f(x)=a⋅(x^2-2⋅x⋅d+d^2)+e$

2) Die Klammer auflösen
Dies machen wir, indem wir den Faktor $a$, der vor der Klammer steht, mit allen Werten in der Klammer multiplizieren.
$ f(x)=a⋅(x^2-2⋅x⋅d+d^2)+e$
$ f(x)=a⋅x^2-a·2⋅x⋅d+a·d^2+e$

3) Die letzten Werte addieren
Um den y-Achsenabschnitt herauszufinden, müssen die beiden letzten Werte nun noch addiert werden. 
$ f(x)=a⋅x^2-a·2⋅x⋅d+a·d^2+e$
$ f(x)=a⋅x^2-a·2⋅x⋅d+(a·d^2+e)$

Hier sind noch einmal die 3 Binomischen Formeln auf einen Blick zusammengefasst:

Gut zu wissen

Hinweis

Für beliebige reelle Zahlen $a$, $b$ und $c$ gilt:

1. Binomische Formel
$(a\textcolor{red}+b)^2 = a^2 \textcolor{red}+ 2·a·b + b^2$

2. Binomische Formel
$(a\textcolor{magenta}-b)^2 = a^2 \textcolor{magenta}- 2·a·b + b^2$

3. Binomische Formel
$(a+b)·(a-b) = a^2 - b^2$

Für die Umformungen sind nur die 1. und 2. Formel wichtig.

Beispiel: Umformung von der Scheitelpunktform in die allgemeine Form

Beispiel

1) Binomische Formel anwenden
$ f(x)=5⋅(x−2)^2+1$
$ f(x)=5⋅(x^2-2⋅x⋅2+2^2)+1$
$ f(x)=5⋅(x^2-4⋅x+4)+1$

2) Die Klammer auflösen
$ f(x)=5⋅(x^2-4⋅x+4)+1$
$ f(x)=5⋅x^2-5·4⋅x⋅+5·4+1$

3) Die letzten Werte addieren
$ f(x)=5⋅x^2-5·4⋅x⋅+(5·4+1)$
$ f(x)=5⋅x^2-20⋅x+(20+1)$
$ f(x)=5⋅x^2-20⋅x+21$

Nun haben wir die Scheitelpunktform in die allgemeine Form überführt. Dies ist etwas leichter als umgekehrt.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Umformung von der allgemeinen Form in die Scheitelpunktform

Du kannst auch die allgemeine Form in die Scheitelpunktform überführen. Dies kannst du z. B. machen, wenn du den Scheitelpunkt herausfinden willst, aber die allgemeine Form gegeben hast.

$f(x) = {a} \cdot {x^2} + {b} \cdot {x} +c     \rightarrow     f(x) = a\cdot(x−d)^2+e$

Hier ist eine Anleitung, wie du vorgehen kannst:

Methode

1) $x^2$ und $x$ zusammen einklammern
Die beiden Terme mit einem $x$, also ${a} \cdot {x^2}$ und ${b} \cdot{x}$, müssen zusammen in eine Klammer. Dann wird der Wert vor dem $x^2$, also $a$, ausgeklammert.
$f(x) = {a} \cdot {x^2} + {b} \cdot {x} +c$                                                                                               $f(x) = ({a} \cdot {x^2} + {b} \cdot {x}) +c$
$f(x) = {a} \cdot ({x^2} + \frac{b}{a} \cdot {x}) +c$

2) Quadratische Ergänzung
Der Faktor vor dem $x$ , also $\frac{b}{a}$, wird durch 2 geteilt und dann quadriert. Dieser Wert wird nun einmal dazu addiert und dann wieder abgezogen. An der Formel ändert sich somit nichts.
$f(x) = {a} \cdot ({x^2} + \frac{b}{a} \cdot {x} + (\frac{b}{2a})^2 - (\frac{b}{2a})^2) +c$

3) Negativen Wert mit dem letzten Wert verrechnen
Nun wird $a$ mit dem negativen Wert $(- (\frac{b}{2a})^2)$ multipliziert; dieser Ausdruck steht somit nicht mehr in der Klammer. Danach wird ${a} \cdot(- (\frac{b}{2a})^2)$ mit dem Wert, der nicht in der Klammer steht, $c$, verrechnet.
$f(x) = {a} \cdot ({x^2} + \frac{b}{a} \cdot {x} + (\frac{b}{2a})^2) +c - a\cdot (\frac{b}{2a})^2$

4) Binomische Formel "zurückrechnen"
Nun musst du den Term, der in der Klammer steht, zurückrechnen, d. h. die passende binomische Formel finden. Dies ist ganz einfach. Wir teilen den Wert vor dem $x$ durch 2 $\rightarrow \frac{b}{2a}$ und nehmen ihn mit dem $x$ zusammen hoch 2.
$f(x) = {a} \cdot (x + (\frac{b}{2a}))^2 + c - a\cdot (\frac{b}{2a})^2$

Dies alles machst du, damit du die Koordinaten des Scheitelpunkts ablesen kannst. $S(-\frac{b}{2a} \mid c-a(\frac{b}{2a})^2)$ beziehungsweise $S(\frac{b}{2a} \mid \frac{4ac-b^2}{4a})$.
Denn, wie du schon weißt, sieht die Scheitelpunktform so aus: $f(x) = a\cdot(x−d)^2+e$

Beispiel: Umformung von der allgemeinen Form in die Scheitelpunktform

Die Funktion $f(x) = {5} \cdot {x^2} + {15} \cdot {x} +2$ ist gegeben und soll in die Scheitelpunktform umgeformt werden. Versuche die Funktion selbstständig umzuformen und lese dann den Scheitelpunkt ab.  

Vertiefung

Lösungsweg
Hier klicken zum Ausklappen

1) $x^2$ und $x$ zusammen einklammern
$f(x) = {5} \cdot {x^2} + {15} \cdot {x} +2$                                                                                              $f(x) = ({5} \cdot {x^2} + {15} \cdot {x}) +2$
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x}) +2$

2) Quadratische Ergänzung
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x}) +2$
$f(x) = {5} \cdot ({x^2 + \textcolor{red}3} \cdot {x} + (\frac{\textcolor{red}3}{2})^2 - (\frac{\textcolor{red}3}{2})^2) +2$
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x} + 2,25 - 2,25) +2$

3) Negativen Wert mit dem letzten Wert verrechnen
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x} + 2,25 - 2,25) +2$
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x} + 2,25) + 2 - 5\cdot2,25$
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x} + 2,25) + 2 - 11,25$
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x} + 2,25) - 9,25$

4) Binomische Formel "zurückrechnen"
$f(x) = {5} \cdot ({x^2 + 3} \cdot {x} + 2,25) - 9,25$
$f(x) = {5} \cdot (x+ 1,5)^2 -9,25$

Somit lautet unsere Scheitelpunktform: $f(x) = {5} \cdot (x+ 1,5)^2 -9,25$.
Den Scheitelpunkt können wir nun ablesen. 

$f(x) = \textcolor{red}a\cdot(x−\textcolor{blue}d)^2+\textcolor{green}e$
Scheitelpunkt: $S(\textcolor{blue}d/\textcolor{green}e)$
$f(x) = \textcolor{red}5\cdot(x−(\textcolor{blue}{-1,5})^2+\textcolor{green}{-9,25}$
$S(\textcolor{blue}{-1,5}/\textcolor{green}{-9,25})$

Dies sieht anfangs sehr kompliziert aus. Aber es sind eigentlich nur 4 Schritte, die du machen musst. Wenn du das ein paar Mal gemacht hast, wird es dir leichter fallen. Schaue dir dafür die Übungsaufgaben an. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welche der abgebildeten Funktionen passt zu der Funktionsgleichung:

$f(x) = 2(x-1)^2+0,5$

Teste dein Wissen!

Forme die Funktion in die Scheitelpunktform um!

$f(x) = 4x^2+8x+5$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie groß ist der Streckfaktor der Funktion?

$f(x) = 3,21\cdot(x-5,43)^2-1,23$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Koordinaten hat der Scheitelpunkt?

$f(x) = 5,725(x+5)^2-3$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7775