Online Lernen | Mathematik Aufgaben | Funktionen Potenzfunktionen Potenzfunktionen - Eigenschaften in der Übersicht

Eigenschaften von Potenzfunktionen: Übersicht

Ihr nehmt gerade in Mathe Potenzfunktionen durch? Du willst nochmal in Ruhe alles zu diesem Thema lernen und vor allem alles verstehen? In diesem Lerntext erklären wir dir die Eigenschaften der jeweiligen Potenzfunktionen. Wir zeigen dir außerdem zu den vier Arten von Potenzfunktionen die Graphen, damit du weißt, wie sie überhaupt aussehen.

Im Folgenden findest du eine Übersicht zu den Eigenschaften von Potenzfunktionen.

Potenzfunktion - Definition

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen werden laut Definition Funktionen der Form $f(x) = ax^n$ für beliebige reelle Zahlen $a$ und $n$ genannt.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Wie du Potenzfunktionen zeichnest, kannst du im Lerntext Potenzfunktionen zeichnen nachlesen und lernen. Außerdem kannst du mehr über Potenzfunktionen mit natürlichen, negativen und rationalen Exponenten in unseren Lerntexten Potenzfunktionen mit natürlichem Exponenten, Potenzfunktionen mit negativem Exponenten und Potenzfunktionen mit rationalem Exponenten lernen.

Im Folgenden werden wir Potenzfunktionen mit $a=1$, also $f(x) = x^n$ behandeln. Der Exponent soll eine ganze Zahl sein.

Wir unterscheiden vier Arten von Potenzfunktionen:

1. Fall: gerader, positiver Exponent

Der Exponent der Funktion ist gerade und positiv. Der Graph einer solchen Funktion liegt oberhalb der x-Achse, also nur im ersten und zweiten Quadranten des Koordinatensystems. Die einzige Nullstelle der Funktion liegt im Ursprung. Der Graph der Funktion geht außerdem immer durch die Punkte $P_1(-1\mid1)$ und $P_2(1\mid1)$.

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem positiven geraden Exponenten

Die Funktionen gehen immer durch die Punkte $P_1(-1\mid1)$, $N(0\mid0)$ und $P_2(1\mid1)$.

Die einzige Nullstelle liegt im Ursprung, $N(0\mid0)$.

Die Definitionsmenge dieser Potenzfunktionen sind alle reellen Zahlen, also $D = \mathbb{R}$.

Der Wertebereich sind alle nichtnegativen reellen Zahlen: $W: y \in \mathbb{R}, y \ge 0$.

Der Graph ist achsensymmetrisch zur y-Achse.

Für die Grenzwerte gilt: $\lim\limits_{x \to -\infty} x^n = \infty$ und $\lim\limits_{x \to \infty} x^n = \infty$

Bitte Beschreibung eingeben
Potenzfunktionen: Exponent gerade und positiv

2. Fall: ungerader, positiver Exponent

Der Exponent der Funktion ist ungerade und positiv. Die Funktion verläuft, wie im Bild zu sehen, aus dem Negativen, über den Ursprung, ins Positive. Die einzige Nullstelle liegt im Punkt $N(0\mid0)$. Dieser Punkt ist Sattelpunkt für jede dieser Funktionen (außer $f(x)=x=x^1$). Alle Funktionen gehen durch die folgenden drei Punkte: $P_1(-1\mid-1)$, $N(0\mid0)$ und $P_2(1\mid1)$

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem positiven ungeraden Exponenten

Die Funktionen gehen alle durch die Punkte: $P_1(-1\mid-1)$, $N(0\mid0)$ und $P_2(1\mid1)$

Die einzige Nullstelle liegt im Ursprung $(0\mid0)$.

Die Definitionsmenge und der Wertebereich sind die Menge der reellen Zahlen, also $D = \mathbb{R}$ und $W = \mathbb{R}$.

Die Funktionen sind punktsymmetrisch zum Ursprung.

Für die Grenzwerte gilt:

$\lim\limits_{x \to -\infty} x^n = -\infty$ und $\lim\limits_{x \to \infty} x^n = \infty$

Bitte Beschreibung eingeben
Potenzfunktionen: Exponent ungerade und positiv

3. Fall: gerader, negativer Exponent

Beim dritten Fall handelt es sich um Funktionen mit einem negativen geraden Exponenten. Der Funktionsgraph liegt auch hier nur im positiven Bereich, also oberhalb der x-Achse. Der Graph schmiegt sich an beide Koordinatenachsen an, das heißt, die Koordinatenachsen sind hier Asymptoten.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Asymptoten sind in unserem Fall Geraden, an die sich unser Funktionsgraph unendlich nahe annähert. Bei der Funktion $f(x) = x^{-2}$ sind beide Koordinatenachsen Asymptoten (siehe Bild).

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem negativen geraden Exponenten

Es gibt keine Nullstelle.

Die Funktionen gehen durch die Punkte $P_1(-1\mid1)$ und $P_2(1\mid1)$.

Der Definitionsbereich sind alle von Null verschiedenen reellen Zahlen: $D : x \in \mathbb{R}, x \neq 0$.

Der Wertebereich sind alle positiven reellen Zahlen $W : y \in \mathbb{R}, y > 0$.

Die Funktionen sind alle achsensymmetrisch zur y-Achse.

Für die Grenzwerte gilt:

$\lim\limits_{x \to -\infty} x^n = 0$ und $\lim\limits_{x \to \infty} x^n = 0$. Die x-Achse ist also Asymptote.

Ferner gilt:

$\lim\limits_{\substack{x \to 0 \\ x < 0}} x^n = \infty$ und $\lim\limits_{\substack{x \to 0 \\ x > 0}} x^n = \infty$. Die y-Achse ist also Asymptote

Bitte Beschreibung eingeben
Potenzfunktionen gerade und negativ

4.Fall: ungerader, negativer Exponent

Der letzte Fall behandelt Funktionen, die einen ungeraden negativen Exponenten besitzen. Solche Funktionen sind ebenfalls, wie Funktionen mit ungeradem positivem Exponenten, punktsymmetrisch zum Ursprung. 

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem negativen ungeraden Exponenten

Die Funktionen gehen durch die Punkte $P_1(-1\mid-1)$ und $P_2(1\mid1)$.

Es gibt keine Nullstelle.

Der Definitionsbereich sind alle von Null verschiedenen reellen Zahlen: $D : x \in \mathbb{R}, x \neq 0$. Der Wertebereich sind alle von Null verschiedenen reellen Zahlen: $W : y \in \mathbb{R}, y \neq 0$.

Die Funktionen sind punktsymmetrisch zum Ursprung.

Für die Grenzwerte gilt:

$\lim\limits_{x \to -\infty} x^n = 0$ und $\lim\limits_{x \to \infty} x^n = 0$. Die x-Achse ist also Asymptote.

Ferner gilt:

$\lim\limits_{\substack{x \to 0 \\ x < 0}} x^n = -\infty$ und $\lim\limits_{\substack{x \to 0 \\ x > 0}} x^n = \infty$. Die y-Achse ist also Asymptote

Bitte Beschreibung eingeben
Potenzfunktionen ungerade und negativ

 

Potenzfunktionen - Sonderfall

Ein Sonderfall bei den Potenzfunktionen ist die Funktion, deren Exponent 0 ist, $f(x) = x^0$. Der Graph dieser Funktion ist eine Parallele zur y-Achse, die durch den Punkt P(0|1) verläuft.

Bitte Beschreibung eingeben
Sonderfall: Potenzfunktionen mit dem Exponenten Null

Nun hast du eine detaillierte Übersicht über die unterschiedlichen Potenzfunktionen in Mathe. Ob du alles verstanden hast, kannst du anhand unserer Übungen testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8565