Mathematik > Funktionen

Eigenschaften von Potenzfunktionen: Übersicht

Inhaltsverzeichnis:

Ihr nehmt gerade in Mathe Potenzfunktionen durch? Du willst nochmal in Ruhe alles zu diesem Thema lernen und vor allem alles verstehen? In diesem Lerntext erklären wir dir die Eigenschaften der jeweiligen Potenzfunktionen. Wir zeigen dir außerdem zu den vier Arten von Potenzfunktionen die Graphen, damit du weißt, wie sie überhaupt aussehen.

Im Folgenden findest du eine Übersicht zu den Eigenschaften von Potenzfunktionen.

Potenzfunktion - Definition

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen werden laut Definition Funktionen der Form $f(x) = ax^n$ für beliebige reelle Zahlen $a$ und $n$ genannt.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Wie du Potenzfunktionen zeichnest, kannst du im Lerntext Potenzfunktionen zeichnen nachlesen und lernen. Außerdem kannst du mehr über Potenzfunktionen mit natürlichen, negativen und rationalen Exponenten in unseren Lerntexten Potenzfunktionen mit natürlichem Exponenten, Potenzfunktionen mit negativem Exponenten und Potenzfunktionen mit rationalem Exponenten lernen.

Im Folgenden werden wir Potenzfunktionen mit $a=1$, also $f(x) = x^n$ behandeln. Der Exponent soll eine ganze Zahl sein.

Wir unterscheiden vier Arten von Potenzfunktionen:

1. Fall: gerader, positiver Exponent

Der Exponent der Funktion ist gerade und positiv. Der Graph einer solchen Funktion liegt oberhalb der x-Achse, also nur im ersten und zweiten Quadranten des Koordinatensystems. Die einzige Nullstelle der Funktion liegt im Ursprung. Der Graph der Funktion geht außerdem immer durch die Punkte $P_1(-1\mid1)$ und $P_2(1\mid1)$.

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem positiven geraden Exponenten

Die Funktionen gehen immer durch die Punkte $P_1(-1\mid1)$, $N(0\mid0)$ und $P_2(1\mid1)$.

Die einzige Nullstelle liegt im Ursprung, $N(0\mid0)$.

Die Definitionsmenge dieser Potenzfunktionen sind alle reellen Zahlen, also $D = \mathbb{R}$.

Der Wertebereich sind alle nichtnegativen reellen Zahlen: $W: y \in \mathbb{R}, y \ge 0$.

Der Graph ist achsensymmetrisch zur y-Achse.

Für die Grenzwerte gilt: $\lim\limits_{x \to -\infty} x^n = \infty$ und $\lim\limits_{x \to \infty} x^n = \infty$

Bitte Beschreibung eingeben
Potenzfunktionen: Exponent gerade und positiv
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

2. Fall: ungerader, positiver Exponent

Der Exponent der Funktion ist ungerade und positiv. Die Funktion verläuft, wie im Bild zu sehen, aus dem Negativen, über den Ursprung, ins Positive. Die einzige Nullstelle liegt im Punkt $N(0\mid0)$. Dieser Punkt ist Sattelpunkt für jede dieser Funktionen (außer $f(x)=x=x^1$). Alle Funktionen gehen durch die folgenden drei Punkte: $P_1(-1\mid-1)$, $N(0\mid0)$ und $P_2(1\mid1)$

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem positiven ungeraden Exponenten

Die Funktionen gehen alle durch die Punkte: $P_1(-1\mid-1)$, $N(0\mid0)$ und $P_2(1\mid1)$

Die einzige Nullstelle liegt im Ursprung $(0\mid0)$.

Die Definitionsmenge und der Wertebereich sind die Menge der reellen Zahlen, also $D = \mathbb{R}$ und $W = \mathbb{R}$.

Die Funktionen sind punktsymmetrisch zum Ursprung.

Für die Grenzwerte gilt:

$\lim\limits_{x \to -\infty} x^n = -\infty$ und $\lim\limits_{x \to \infty} x^n = \infty$

Bitte Beschreibung eingeben
Potenzfunktionen: Exponent ungerade und positiv

3. Fall: gerader, negativer Exponent

Beim dritten Fall handelt es sich um Funktionen mit einem negativen geraden Exponenten. Der Funktionsgraph liegt auch hier nur im positiven Bereich, also oberhalb der x-Achse. Der Graph schmiegt sich an beide Koordinatenachsen an, das heißt, die Koordinatenachsen sind hier Asymptoten.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Asymptoten sind in unserem Fall Geraden, an die sich unser Funktionsgraph unendlich nahe annähert. Bei der Funktion $f(x) = x^{-2}$ sind beide Koordinatenachsen Asymptoten (siehe Bild).

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem negativen geraden Exponenten

Es gibt keine Nullstelle.

Die Funktionen gehen durch die Punkte $P_1(-1\mid1)$ und $P_2(1\mid1)$.

Der Definitionsbereich sind alle von Null verschiedenen reellen Zahlen: $D : x \in \mathbb{R}, x \neq 0$.

Der Wertebereich sind alle positiven reellen Zahlen $W : y \in \mathbb{R}, y > 0$.

Die Funktionen sind alle achsensymmetrisch zur y-Achse.

Für die Grenzwerte gilt:

$\lim\limits_{x \to -\infty} x^n = 0$ und $\lim\limits_{x \to \infty} x^n = 0$. Die x-Achse ist also Asymptote.

Ferner gilt:

$\lim\limits_{\substack{x \to 0 \\ x < 0}} x^n = \infty$ und $\lim\limits_{\substack{x \to 0 \\ x > 0}} x^n = \infty$. Die y-Achse ist also Asymptote

Bitte Beschreibung eingeben
Potenzfunktionen gerade und negativ

4.Fall: ungerader, negativer Exponent

Der letzte Fall behandelt Funktionen, die einen ungeraden negativen Exponenten besitzen. Solche Funktionen sind ebenfalls, wie Funktionen mit ungeradem positivem Exponenten, punktsymmetrisch zum Ursprung. 

Merke

Merke

Hier klicken zum Ausklappen

Potenzfunktionen mit einem negativen ungeraden Exponenten

Die Funktionen gehen durch die Punkte $P_1(-1\mid-1)$ und $P_2(1\mid1)$.

Es gibt keine Nullstelle.

Der Definitionsbereich sind alle von Null verschiedenen reellen Zahlen: $D : x \in \mathbb{R}, x \neq 0$. Der Wertebereich sind alle von Null verschiedenen reellen Zahlen: $W : y \in \mathbb{R}, y \neq 0$.

Die Funktionen sind punktsymmetrisch zum Ursprung.

Für die Grenzwerte gilt:

$\lim\limits_{x \to -\infty} x^n = 0$ und $\lim\limits_{x \to \infty} x^n = 0$. Die x-Achse ist also Asymptote.

Ferner gilt:

$\lim\limits_{\substack{x \to 0 \\ x < 0}} x^n = -\infty$ und $\lim\limits_{\substack{x \to 0 \\ x > 0}} x^n = \infty$. Die y-Achse ist also Asymptote

Bitte Beschreibung eingeben
Potenzfunktionen ungerade und negativ

 

Potenzfunktionen - Sonderfall

Ein Sonderfall bei den Potenzfunktionen ist die Funktion, deren Exponent 0 ist, $f(x) = x^0$. Der Graph dieser Funktion ist eine Parallele zur y-Achse, die durch den Punkt P(0|1) verläuft.

Bitte Beschreibung eingeben
Sonderfall: Potenzfunktionen mit dem Exponenten Null

Nun hast du eine detaillierte Übersicht über die unterschiedlichen Potenzfunktionen in Mathe. Ob du alles verstanden hast, kannst du anhand unserer Übungen testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Zu welcher Art Potenzfunktion gehört dieser Funktionsgraph?

Aufgabenstellung Potenzfunktionen Überblick

Teste dein Wissen!

Welche Aussagen sind richtig?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussagen stimmen über folgende Funktion: $g(x)= x^{-3}$

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was sind die Eigenschaften von Potenzfunktionen mit negativen, ungeraden Exponenten?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Corinna O., vom 2019-10-17
alles gut
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8565