Suche
Kontakt

Quadratische Ergänzung: Erklärung und Beispiele
Mathematik > Terme und Gleichungen

Quadratische Ergänzung: Erklärung und Beispiele | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Die quadratische Ergänzung ist neben der p-q-Formel und der Mitternachtsformel eine Methode, um quadratische Gleichungen nach $x$ umzustellen und zu lösen. Bei der quadratischen Ergänzung handelt es sich nicht um eine bestimmte Formel, sondern um eine mathematische Methode, durch die quadratische Gleichungen unter Zuhilfenahme der binomischen Formeln nach $x$ umgestellt werden können.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Quadratische Ergänzung - Schritt für Schritt erklärt

Betrachten wir folgende quadratische Gleichung:

$2 \cdot x^2 + 8 \cdot x - 10 = 0$

In einem ersten Schritt müssen wir die quadratische Gleichung in ihre Normalform umformen, das heißt, dass der Faktor vor dem $x^2$ eine $1$ sein muss. Das erreichen wir ganz einfach, indem wir die ganze Gleichung durch die Zahl, die momentan vor dem $x^2$ steht, teilen.

1. Schritt: Umformung der quadratischen Gleichung in die Normalform

$2 \cdot x^2 + 8 \cdot x - 10 = 0~~~~| :2$

$x^2 + 4\cdot x - 5 = 0$

2. Schritt: Variablentrennung

Im nächsten Schritt sortieren wir die Gleichung so um, dass alle Zahlen, die mit einer Variablen (in diesem Fall $x$) verbunden sind, allein auf einer Seite stehen.

$x^2 + 4\cdot x - 5 = 0~~~~| + 5$

$x^2 + 4\cdot x = 5$

3. Schritt: quadratische Ergänzung

Nun kommen wir zum entscheidenden Schritt: die quadratische Ergänzung. Um eine quadratische Ergänzung machen zu können, benötigen wir eine Zahl aus der Gleichung. Allerdings nicht eine beliebige Zahl, sondern die Zahl, die vor dem $x$ steht. Egal welche quadratische Gleichung du berechnest - du nimmst immer die Zahl, die vor dem $x$ steht. In diesem Fall also die $4$.

$x^2 + \textcolor{red}{4}\cdot x = 5$

Eine quadratische Ergänzung folgt immer demselben Muster: Du addierst auf beiden Seiten der Gleichung die Hälfte der Zahl vor dem $x$ zum Quadrat. Sehen wir uns das Beispiel an:

$x^2 + \textcolor{red}{4}\cdot x = 5~~~~|+(\frac{\textcolor{red}{4}}{2})^2$

$x^2 + \textcolor{red}{4}\cdot x + (\frac{\textcolor{red}{4}}{2})^2 = 5 + (\frac{\textcolor{red}{4}}{2})^2$

$x^2 + 4\cdot x + 4 = 5 + 4$

$x^2 + 4\cdot x + 4 = 9$

Merke

Quadratische Ergänzung

$x^2 + \textcolor{red}{p}\cdot x = q~~~~| + (\frac{\textcolor{red}{p}}{2})^2$

$x^2 + p\cdot x + (\frac{\textcolor{red}{p}}{2})^2 = q + (\frac{\textcolor{red}{p}}{2})^2$

Wieso machen wir das? Aus mathematischer Sicht ändern wir an der Gleichung nichts, da wir auf beiden Seiten dasselbe addieren. Schauen wir uns den nächsten Schritt an.

4. Schritt: Binomische Formel erkennen und rückwärts anwenden

Für den nächsten Schritt musst du dich an die binomischen Formeln erinnern.

Gut zu wissen

1. Binomische Formel: $(a + b)^2 = a^2 + 2\cdot a\cdot b + b^2$

2. Binomische Formel: $(a - b)^2 = a^2 - 2\cdot a\cdot b + b^2$

3. Binomische Formel: $(a + b)\cdot(a - b) = a^2- b^2$

Vergleichen wir die linke Seite unserer quadratischen Gleichung mit der ersten binomischen Formel fällt auf, dass wir durch die quadratische Ergänzung einen ganz ähnlichen Ausdruck erzeugt haben:

$\textcolor{blue}{x^2} + \textcolor{green}{4\cdot x} + \textcolor{red}{4} = 9$

$\textcolor{blue}{a^2} + \textcolor{green}{2\cdot a\cdot b} + \textcolor{red}{b^2} = 9$

Wir können den linken Ausdruck der quadratischen Gleichung also mit Hilfe der binomischen Formel vereinfachen:

$\textcolor{blue}{x^2} + \textcolor{green}{4\cdot x} + \textcolor{red}{4} = 9~~~~~~~~~~\textcolor{blue}{a^2} + \textcolor{green}{2\cdot a\cdot b} + \textcolor{red}{b^2} = 9$

$(\textcolor{blue}{x} + \textcolor{red}{2})^2 = 9~~~~~~~~~~~~~~~~~~(\textcolor{blue}{a} + \textcolor{red}{b})^2 =9$

Nun haben wir das $x$ nur noch einmal in der Gleichung, sodass wir die Gleichung nun ganz einfach nach $x$ umstellen können.

5. Schritt: Gleichung nach $x$ umstellen

$(x + 2)^2 = 9~~~~~|\sqrt{}$

$x + 2 = \pm 3$

$x_1 = 1 ~~~~~~~~~~x_2 = - 5$

Die quadratische Gleichung hat zwei reelle Lösungen.

Merke

Anwendung der quadratischen Ergänzung

1. Umformung der quadratischen Gleichung in die Normalform

2. Sortieren der Variablen

3. Quadratische Ergänzung

4. Binomische Formel erkennen und rückwärts anwenden

5. Gleichung nach $x$ umstellen

Beispielaufgaben

Beispiel

$x^2 + 5\cdot x +4 = 0$

$x^2 + 5\cdot x +4 = 0~~~~~|- 4$

$x^2 + 5 \cdot x = -4~~~~~| +(\frac{5}{2})^2$

$x^2 + 5 \cdot x +(\frac{5}{2})^2= - 4 +(\frac{5}{2})^2$

$(x + \frac{5}{2})^2 = - \frac{16}{4} + \frac{25}{4}$

$(x + \frac{5}{2})^2 = \frac{9}{4}~~~~~|\sqrt{}$

$x + \frac{5}{2} = \pm \frac{3}{2}$

$x_1 = \frac{3}{2} - \frac{5}{2} = -1 ~~~~~~~~~~x_2 = - \frac{3}{2} - \frac{5}{2} = -4$

Beispiel

$2\cdot x^2 - 8 \cdot x -24 = 0$

$2\cdot x^2 - 8 \cdot x -24 = 0~~~~~|:2$

$x^2 - 4\cdot x -12 = 0~~~~~| +12$

$x^2 - 4\cdot x = 12~~~~~|+(\frac{-4}{2})^2$

$x^2 - 4\cdot x + 4 = 12 + 4$

Achtung: Da wir die Form $a^2 \textcolor{red}{-} 2 \cdot x + 4$ haben, müssen wir die zweite binomische Formel anwenden: $(a\textcolor{red}{-} b)^2 = a^2 \textcolor{red}{-} 2\cdot a \cdot b + b^2$

$(x - 2)^2 = 16~~~~~\sqrt{}$

$x - 2 = \pm 4$

$x_1 = - 2 ~~~~~~~~~~x_2 = 6$

Teste dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Bei welcher Gleichung hilft uns die quadratische Ergänzung weiter?

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Wie lautet die erste Binomische Formel?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welcher ist der richtige Ausdruck für die quadratische Ergänzung?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussage stimmt?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
15.01.2025 , von Simone K.
Wir sind sehr zufrieden mit dem Studienkreis!
14.01.2025 , von Madlen M.
Meine Tochter geht sehr gerne hin, kurzfristig konnten wir noch eine zweite Stunde/Fach dazubuchen. Es wird sehr auf die Größe der Gruppe geachtet und das es von der Klassenstufe zusammenpasst. So kann es bleiben.
13.01.2025 , von Osman A.
Wir glauben, dass es besser wäre, die Eltern der Schüler, die alle sechs Monate hierher kommen, zu treffen und ihnen allgemeine Informationen über die Schüler zu geben.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7868