Quadratische Funktionen zeichnen

Mathematik > Funktionen
Quadratische Funktionen zeichnen - Mathematik Klasse 10! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Quadratische Funktionen begegnen dir öfter als du glaubst. Wir schauen uns hier zunächst einmal an, was eine quadratische Funktion ist, um sie dann zeichnen zu können. 

Was ist eine quadratische Funktion?

Bei quadratischen Funktionen handelt es sich um ganzrationale Funktionen der Form $f(x) = ax^2 + bx + c$, wobei $a$, $b$ und $c$ reelle Zahlen mit $a \neq 0$ sind. Das bedeutet auch, dass es für jeden y-Wert (abgesehen von dem des Scheitelpunkts) zwei x-Werte gibt!

Schauen wir uns als Beispiel die quadratische Funktion $f(x) = 0,5x^2 - 4x + 6$ an:

Zeichnung der quadratischen Funktion

Dies ist der Graph der Funktion $f(x) = 0,5x^2 - 4x + 6$

Zu dem y-Wert $2,5$ gibt es zwei x-Werte, nämlich $1$ und $7$. Wie zu erkennen ist, gilt dies für alle y-Werte außer für den des Scheitelpunkts.

Auch im Alltag begegnen dir quadratische Funktionen. Bei vielen Brücken ist eine Parabel zu sehen.

Brücke

Parabel ist eigentlich nur ein anderes Wort für die typische Form einer quadratischen Funktion, welche du noch näher kennenlernen wirst.

Anlegen einer Wertetabelle

Erst einmal schauen wir uns den Graphen der Funktion $f(x) = x^2$ an. Dazu können wir eine Wertetabelle erstellen. Wir setzen für $x$ beliebige Werte ein und erhalten durch Ausrechnen den zugehörigen y-Wert.

x-Werte y-Werte
0 0
1 1
2 4
3 9
4 16

Wertetabelle für $f(x) = y = x^2$

Punkte ins Koordinatensystem eintragen

Nun haben wir schon 9 Punkte, die wir in unser Koordinatensystem eintragen können. Für die negativen x-Werte, also $-1$, $-2$, $-3$ und $-4$, ergeben sich hier dieselben y-Werte wie für $1$, $2$, $3$ und $4$, denn $-1\cdot(-1) = 1$, $-2\cdot(-2) = 4$ und so weiter. Das ist in unserem Beispiel, nicht aber bei jeder quadratischen Funktion so.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Graph zeichnen

Versuche nun einmal den Graphen selber zu zeichnen, indem du die Punkte miteinander verbindest. Schaue dir dann die Abbildung an und vergleiche sie mit deiner Zeichnung.

Abbildung der Funktion

Dies ist der Graph der Funktion $f(x) = x^2$. Das ist die Normalparabel.

Bitte Beschreibung eingeben

Beispielaufgabe: Zeichnen einer quadratischen Funktion

Ein anderes Beispiel mit einer kleinen Veränderung ist die Funktion $f(x) = x^2+1$. Zuerst erstellen wir wieder unsere Wertetabelle.

x-Werte y-Werte
0 1
1 2
2 5
3 10
4 17

Wertetabelle für $f(x) = y = x^2 + 1$

Aus der Tabelle können wir wieder Punkte entnehmen und die in unser Koordinatensystem einzeichnen. Und genau wie eben kann für den negativen x-Wert der gleiche Wert von y eingezeichnet werden. Daher ist es beim Einzeichnen hilfreich, zuerst den positiven und dann direkt den negativen Wert einzuzeichnen. Somit musst du nicht zweimal nach dem y-Wert suchen.

Zeichne nun die Funktion selber oder überlege was mit deiner Funktion $f(x) = x^2$ passiert.

Abbildung der verschobenen Funktion

Bitte Beschreibung eingeben

Wie du siehst, wurde unsere Funktion von eben ($f(x) = x^2$) um 1 Einheit nach oben verschoben

In der Gleichung wird eine Verschiebung der Normalparabel durch das Addieren einer positiven oder negativen Zahl bewirkt. Die Verschiebung nach oben wird bewirkt, indem zu $x^2$ eine positive Zahl addiert wird. So gibt es zum Beispiel auch die Funktion $g(x) = x^2+99$ bei der die Normalparabel um 99 Einheiten nach oben verschoben wird.

Die Verschiebung nach unten wird bewirkt, indem eine negative Zahl zu $x^2$ hinzugerechnet wird. Ein einfaches Beispiel ist $f(x) = x^2-1$. Hier wird der Graph um 1 Einheit nach unten verschoben und sieht dann so aus:

funktion x^2-1

Dabei sieht man jetzt die Nullstellen. Das sind die Stellen, wo die Parabel die x-Achse schneidet. Bei dem oberen Graph sind $A(-1\mid0)$ und $B(1\mid0)$ die Punkte, in denen der Graph die x-Achse schneidet. Die Nullstellen sind demnach $x_{1} = -1$ und $x_{2} = 1$.

So jetzt weißt du, was eine quadratische Funktion ist und wie du sie zeichnen kannst. Ein wesentlicher Unterschied zur linearen Funktion ist, dass du für jeden y-Wert (außer dem des Scheitelpunkts) zwei x-Werte erhältst.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben. Wir wünschen dabei viel Spaß!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Zeichne die Funktion: $f(x) = 2\cdot(x+5)^2-3$
Wenn du dir nicht sicher bist, wie du die Funktion zeichnen sollst, lese dir den Text zur Scheitelform durch.
Welche Funktion ist die Richtige?

Teste dein Wissen!

Zeichne die Funktion $f(x) = x^2-5$.
Erstelle dafür zuerst eine Wertetabelle und zeichne die Punkte dann in ein passendes Koordinatensystem ein.
Welches ist die richtige Funktion?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

tabelle 0.5x^2+1



Zeichne zu dieser Tabelle eine Funktion und leite daraus die Formel dafür ab.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist sinnvoll, wenn man eine Funktion zeichnen soll?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7774