Suche
Kontakt

Was ist eine mathematische Funktion?

Mathematik > Funktionen
Was ist eine mathematische Funktion? | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Funktionen sind ein wichtiger Bestandteil der Mathematik. In diesem Lerntext erhältst du eine grundlegende Definition und Erklärungen zum Thema Funktionen.

Definition einer mathematischen Funktion

Eine Funktion ist eine Beziehung zwischen zwei Mengen. Meist werden die Elemente dieser Mengen $x$ und $y$ genannt. Diese Mengen heißen Definitionsbereich (Definitionsmenge) und Wertebereich (Wertemenge). Der Definitionsbereich wird durch die x-Werte (Argumente) gebildet, der Wertebereich durch die zugeordneten y-Werte. Diese y-Werte nennt man auch Funktionswerte oder Ordinaten. Die Funktion kann durch eine Gleichung beschrieben und als Funktionsgraph in einem Koordinatensystem dargestellt werden.

Mathematisch ausgedrückt geht es um folgenden Zusammenhang:

Merke

Zwei Variablen stehen in einer Beziehung zueinander.
Dabei ist $x$ die unabhängige Variable mit der man $y$ berechnet. Deshalb nennt man $y$ auch abhängige Variable. Die Menge aller $x$ nennt man Definitionsbereich oder Definitionsmenge und schreibt dafür $ \mathbb{D}_f $.
Die über die Funktionsvorschrift $f$ berechnete Menge aller $y$ heißt Wertebereich oder Wertemenge und wird mit $ \ \mathbb W_f$ bezeichnet. Man nennt $x$ und $y$ auch Elemente ihrer jeweiligen Menge.

Dabei gilt: Wird jedem x-Wert genau ein y-Wert zugeordnet, dann nennt man diese Beziehung eine Funktion. Die Funktion ist damit immer eindeutig. Ist jedem y-Wert dann auch genau ein x-Wert zugeordnet, dann nennt man die Funktion eineindeutig.

Für den mit $x$ berechneten Funktionswert $y$ schreibt man auch $f(x)$.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Wertetabelle

Um einen Funktionsgraphen zu zeichnen, kann eine Wertetabelle erstellt werden. Die Punkte $P(x \mid y)$ können dann in ein Koordinatensystem eingezeichnet werden.

Beispiel einer Wertetabelle für $y = f(x) = x^2$:

x-2012
y4014

Diese Funktion ist nicht eineindeutig, da es zum Beispiel für den y-Wert $4$ zwei x-Werte gibt, nämlich $2$ und $-2$.

Methode

In einer Wertetabelle werden ausgewählten x-Werten durch eine Funktionsvorschrift ihre y-Werte zugeordnet.

So wird ein Punkt angegeben:

$P (x-Wert \mid y-Wert)$

Was ist ein Koordinatensystem?

Die Punkte werden dann in ein Koordinatensystem eingezeichnet. Das Koordinatensystem besteht aus zwei rechtwinklig angeordneten Zahlengeraden, die sich jeweils bei Null schneiden. Diese Zahlengeraden werden mit $x$ und $y$ bezeichnet. Der Punkt P hat eine x-Koordinate durch eine y-Koordinate.

koordinatensystem

Abbildung: Koordinatensystem

Wir sehen, dass an der x-Achse und an der y-Achse Pfeile sind. Das deutet darauf hin, dass die Zeichnung fortgesetzt werden kann. Wenn wir Funktionsgraphen zeichnen, betrachten wir nur einen Abschnitt.

Um einen Punkt einzuzeichnen, geht man wie folgt vor: Betrachten wir als Beispiel den Punkt $P(2/6)$. Zunächst suchen wir die $2$ auf der x-Achse und ziehen gedanklich eine Linie nach oben. Dann suchen wir die $6$ auf der y-Achse und ziehen eine gedankliche Linie nach rechts. Da wo sich die beiden "Gedankenlinien" treffen, setzen wir den Punkt.

In der Regel sind diese Punkte zu verbinden, und wir erhalten einen Teil des Funktionsgraphen.

Funktionsgleichung, Zuordnungsvorschrift und Funktionsterm

Funktionen können verschieden notiert werden. Dabei bedeuten verschiedene Schreibweisen oft das Gleiche. Die in der Schule am häufigsten verwendete Schreibweise ist die der Funktionsgleichung. Es gibt jedoch auch eine Zuordnungsvorschrift und einen Funktionsterm, die das Gleiche bedeuten:

  • Funktionsgleichung 
    $f(x) = x^2 +3$

  • Zuordnungsvorschrift
    $x\rightarrow x^2+3$

  • Funktionsterm
    $x^2+3$ 

Dabei ist $x$ eine beliebige reelle Zahl: $x \in \mathbb{R}$. Das ist der größtmögliche Definitionsbereich für diese Funktion.

Nun hast du die Grundlagen zum Thema Funktionen kennengelernt. Mit den Übungsaufgaben kannst du dein Wissen überprüfen. Viel Erfolg dabei!

Video: Fabian Serwitzki

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Welche Bedingung muss erfüllt sein, damit wir von einer Funktion sprechen können?

Teste dein Wissen!

Wie ist ein Koordinatensystem aufgebaut?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Bezeichnung gilt für $f(x)= ax^2+bx+c$ ?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie wird ein Punkt angegeben?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.
13.03.2025 , von Heike F.
Wir sind in Rheinbach super beraten worden und mein Sohn hat einen unfassbar vielseitigen und professionellen Nachhilfelehrer. Vielen Dank für alles!!!!
13.03.2025 , von Edith O.
Sehr flexibel, gehen auf die Kinder super ein. Immer wieder gerne.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7754