Standortsuche
Ihr Kontakt zu uns:
Standort auswählen & gratis beraten lassen
Kontaktformular

Achsenschnittpunkte von Funktionen berechnen

Mathematik > Funktionen
Achsenschnittpunkte von Funktionen berechnen! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit der Frage, wie man die Schnittpunkte von Funktionen mit den Achsen des Koordinatensystems berechnet.

Funktionsgraphen werden in ein Koordinatensystem eingezeichnet. Dabei kann der Funktionsgraph die Koordinatenachse schneiden oder auch nur berühren. Diese Stellen werden auch Achsenabschnitte genannt.
In diesem Lerntext erklären wir dir, wie die Schnittpunkte mit den Achsen berechnet werden.

schnittpunkte

Abbildung: Schnittpunkte mit den Koordinatenachsen

Die Abbildung zeigt eine Funktion, die zwei Schnittpunkte mit der x-Achse und einen Schnittpunkt mit der y-Achse hat.  Die nachfolgende Abbildung zeigt, wie die Achsen bezeichnet werden:

Gut zu wissen

Hinweis

koordinatensystem

Abbildung: Koordinatensystem

Wir sehen, dass die x-Achse von links nach rechts verläuft und die y-Achse von unten nach oben.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Schnittpunkte mit der x-Achse

Die Schnittstellen mit der x-Achse werden auch Nullstellen genannt. Um diese zu ermitteln, muss die Funktion gleich null gesetzt werden. Anders gesagt muss der y-Wert den Wert null haben. Wenn wir uns das Koordinatensystem anschauen, ist dies logisch, da die x-Achse auf der Höhe von $y=0$ verläuft.

Methode

$f(x) = 0 \rightarrow$ Schnittpunkt(e) mit der x-Achse

Es gibt je nach Art der Funktion verschiedene Möglichkeiten die Nullstellen zu berechnen. Dazu gehört bei quadratischen Funktionen zum Beispiel die p-q-Formel oder bei Funktionen mit $x^3$ die Polynomdivision.

Schnittpunkt mit der y-Achse

Die Schnittstelle mit der y-Achse wird auch y-Achsenabschnitt genannt. Wichtig dabei ist, dass es nur einen einzigen Schnittpunkt geben kann. Dies liegt daran, dass jedem x-Wert einer Funktion nur maximal ein y-Wert zuordnet werden kann. Der x-Wert, an dem die Funktion die y-Achse schneidet, ist immer null.

Methode

$x=0 \rightarrow$ Schnittpunkt mit der y-Achse

Beispielaufgabe: Schnittpunkte mit den Koordinatenachsen bestimmen

Beispiel

Was sind die Schnittpunkte der Funktion $f(x) = 2x^2+3x-1$ mit den Koordinatenachsen?

x-Achse

$f(x) = 0$

$f(x) = 2x^2+x-3 = 0$

Wir lösen die Gleichung mit der Mitternachtsformel

$x_1 =-1,5 $

$x_2 = 1$

$P_1(-1,5/0)$

$P_2(1/0)$

$~$

y-Achse

$x=0$

$f(0) = 2\cdot 0^2+0-3 = -3$

$f(0)=y =-3$

$P_3(0/-3)$

Die Funktion schneidet die x-Achse an den Punkten $P_1(-1,5/0)$, $P_2(1/0)$ und die y-Achse am Punkt $P_3(0/-3)$.

Mit den Übungsaufgaben kannst du dein Wissen überprüfen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Was ist der y-Achsenabschnitt folgender Funktion?
$f(x) = 5x-3$

Teste dein Wissen!

Wodurch sind Schnittpunkte mit der $y$-Achse gekennzeichnet?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was sind die Nullstellen der Funktion $f(x)=2x^2-6x+4$? Rechne mit der Mitternachtsformel oder der p-q-Formel.

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie werden Schnittpunkte mit der x-Achse auch genannt?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
29.06.2025
Wunderbare sehr freundliche Betreuung,unser Sohn geht gerne zum Unterricht und bekommt alles verständlich erklärt.
06.06.2025
Meine Tochter ging 1x pro Woche für Deusch Nachhilfe zum Studienkreis und verbesserte sich in 3 Monaten von Note 5 auf Note 2 :-))
06.06.2025
Mein Sohn hat seine Noten verbessert.Vladimir ist sehr guter Leiter ,er war immer erreichbar und wenn mein Sohn krank war ,er konnte Unterricht nachholen.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7751