Mathematik > Funktionen

Exponentielles Wachstum und exponentielle Abnahme

Inhaltsverzeichnis:

In diesem Text erklären wir dir, was die exponentielle Zunahme und die exponentielle Abnahme sind und lösen dazu Rechenbeispiele.

Definition

Die exponentielle Zunahme wird auch als exponentielles Wachstum und die exponentielle Abnahme wird auch als exponentieller Zerfall bezeichnet. Es handelt sich um Prozesse, bei denen ein Anfangsbestand pro Zeiteinheit mit dem Faktor $a$ vervielfacht wird. 
Ein Beispiel für die exponentielle Zunahme ist die Vermehrung von Bakterien. Zu Beginn gibt es ein ($1$) Bakterium, welches sich nach einer Stunde verdoppelt hat. Nach Ablauf der zweiten Stunde haben sich die beiden Bakterien wieder jeweils verdoppelt; es sind nun vier Bakterien. Nach fünf Stunden ist die Anzahl der Bakterien auf $32$ gestiegen und nach zehn Stunden auf insgesamt $1024$ Bakterien. Wie du siehst, wächst die Anzahl sehr schnell. Schauen wir uns den Funktionsgraphen dazu an:

funktion_bakterien
Abbildung: exponentielles Wachstum (Bakterienwachstum)

Wie sieht die Funktionsgleichung dieser Funktion aus? Schauen wir uns zuerst die allgemeine Form an:

Methode

Methode

Hier klicken zum Ausklappen

Bei der exponentiellen Zunahme und Abnahme ist die Variable ($x$-Wert) im Exponenten. Die Basis ist die Änderungsrate, $a$. Die Variable steht meistens für die Zeit und wird daher meistens mit $t$ abgekürzt. Die entsprechende Formel zum exponentiellen Wachstum bzw. Verfall sieht dann so aus:

$N (t) = N_0⋅a ^t$

Dabei ist:

$N(t)$ Wert zum Zeitpunkt $t$
$N _0$ Anfangswert; ursprünglicher Bestand (zum Zeitpunkt t=0)
$a$  Änderungsrate
$t$  Zeit

Wenden wir dies auf unser Beispiel des Bakterienwachstums an: Der Anfangswert ($N_0$) beträgt $1$ und die Änderungsrate $a$ ist $2$, da sich die Bakterien verdoppeln. Damit können wir die Funktionsgleichung aufstellen:

$ N(t) = 1 \cdot 2 ^t$    

oder kürzer geschrieben:

$ N(t) = 2 ^t$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Exponentielle Zunahme - Wachstum

Weitere Beispiele für das exponentielle Wachstum sind: das Wachstum von Bevölkerungen oder auch das Wachstum von Zinsen bei der Zinseszinsrechnung .

Beim exponentiellen Wachstum ist die Änderungsrate größer als 1:

$a>1$

Je größer die Änderungsrate, desto schneller wächst die Funktion.

Die Zunahme kann übrigens auch in Prozent angegeben werden:

$N(t) = N_0 \cdot (1+\frac{p}{100})^t$, wobei gilt: $a = 1+\frac{p}{100}$

Dabei ist $p$ der Prozentsatz. Der Prozentsatz beschreibt das Wachstum prozentual.

Bezogen auf das Beispiel zum exponentiellen Wachstum der Bakterien:

Die Anzahl der Bakterien hat sich hier stündlich verdoppelt, also:

$a=2~~~\rightarrow~~~1+\frac{p}{100}=2~~~\rightarrow~~~p=100$

Die Bakterien vermehren sich stündlich um 100%.

Exponentielle Abnahme - Zerfall

Beim exponentiellen Zerfall muss die Änderungsrate zwischen $0$ und $1$ liegen:

$0

Für die allgemeine Funktionsgleichung gibt es wieder zwei Formeln, je nachdem, ob man mit der Änderungsrate ($a$) oder mit der prozentualen Abnahme ($p$) rechnen möchte:

$ N(t) = N_0 \cdot a ^{ t}$    bzw.    $N(t)=N_0 (1-\frac{p}{100}) ^t$ 

Dabei ist $p$ der Prozentsatz, um den sich der Anfangswert verringert. Bei einer Abnahme von $20\%$ ist $p=20$ und $a = 1 - 0,2 = 0,8$.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Bei einem chemischen Stoff zerfällt jedes Jahr $10 \%$ der Masse. Anfangs ist der Stoff $50~kg$ schwer.
Wie viel Masse ist jeweils nach $2$, $5$ und $20$ Jahren noch vorhanden?

Zunächst müssen wir die Funktionsgleichung aufstellen. Es gilt:

$N_0 = 50~kg$
Es handelt sich um eine Abnahme von jährlich $10\%$:   $ a = 1-\frac{10}{100}=1-0,1=0,9$

Wir erhalten die Funktionsgleichung: 

$ N(t) = 50 \cdot 0,9^t$

Mit Hilfe der Funktionsgleichung können wir die Fragen beantworten:

Nach 2 Jahren:

$N(2) =  50  \cdot 0,9^2 = 40,5~kg$

Nach $5$ Jahren:

$N(5) =  50  \cdot 0,9^5 \approx 29,5~kg$

Nach $20$ Jahren:

$N(20) =  50  \cdot 0,9^20 \approx 6,1~kg$

Die entsprechende Funktion sieht so aus:

funktion_zerfall
Abbildung: exponentielle Abnahme (Zerfall der Masse)

In den Übungsaufgaben kannst du dein neu erworbenes Wissen über exponentielles Wachstum und exponentielle Abnahme vertiefen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Maike möchte Geld sparen. Sie hat 250 € angespart und zahlt diese nun auf ein Sparkonto ein. Sie erhält jährlich 1,5 % Zinsen auf das Geld. Sie fragt sich, wie viel Geld nach 10 Jahren auf dem Konto sein wird. 
Kannst du ihr helfen?

Teste dein Wissen!

In einem Dorf leben heute ca. 500 Menschen. Aus Erfahrung weiß man, dass die Einwohnerzahl jährlich um ca. 10% abnimmt.
Nach wie vielen Jahren werden nur noch ca. 300 Menschen in dem Dorf leben?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

$N(15) = 50.000 $
$a = 1,6$
$N_0 =~?$
Berechne den Anfangswert. Runde dein Ergebnis auf zwei Nachkommastellen.

Der Anfangswert kann durch Umformung der Formel berechnet werden.

$N(t) = N_0 \cdot a^t$     $|:a^t$

$N_0 = \frac{N(t)}{ a^t}$ 

$N_0 = \frac{50000}{1,6^{15}} \approx$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Heinrich ist krank. Er hat ein Bakterium in sich, welches sich stündlich verdreifacht. Morgens um 7 Uhr sind 50 Bakterien in seinem Körper. Um 15 Uhr geht er zum Arzt und bekommt ein Antibiotikum, welches die Bakterienanzahl stündlich halbiert
Wie viele Bakterien sind um 15 Uhr und um 20 Uhr in Heinrichs Körper? Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8572