Exponentielles Wachstum und exponentielle Abnahme

Mathematik > Funktionen
Exponentielles Wachstum & exponentielle Abnahme! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Text erklären wir dir, was die exponentielle Zunahme und die exponentielle Abnahme sind und lösen dazu Rechenbeispiele.

Definition

Die exponentielle Zunahme wird auch als exponentielles Wachstum und die exponentielle Abnahme wird auch als exponentieller Zerfall bezeichnet. Es handelt sich um Prozesse, bei denen ein Anfangsbestand pro Zeiteinheit mit dem Faktor $a$ vervielfacht wird. 
Ein Beispiel für die exponentielle Zunahme ist die Vermehrung von Bakterien. Zu Beginn gibt es ein ein Bakterium, welches sich nach einer Stunde verdoppelt hat. Nach Ablauf der zweiten Stunde haben sich die beiden Bakterien wieder jeweils verdoppelt; es sind nun vier Bakterien. Nach 5 Stunden ist die Anzahl der Bakterien auf $32$ gestiegen und nach 10 Stunden auf insgesamt $1024$ Bakterien. Wie du siehst, wächst die Anzahl sehr schnell. Schauen wir uns den Funktionsgraphen dazu an:

funktion_bakterien

Abbildung: exponentielles Wachstum (Bakterienwachstum)

Wie sieht die Funktionsgleichung dieser Funktion aus? Schauen wir uns zuerst die allgemeine Form an:

Methode

Bei der exponentiellen Zunahme und Abnahme ist die Variable im Exponenten. Die Basis ist die Änderungsrate, $a$. Die Variable steht meistens für die Zeit und wird daher meistens mit $t$ abgekürzt. Die entsprechende Formel zum exponentiellen Wachstum bzw. Zerfall sieht dann so aus:

$N (t) = N_0⋅a ^t$

Dabei ist:

$N(t)$ Wert zum Zeitpunkt $t$
$N _0$ Anfangswert; ursprünglicher Bestand (zum Zeitpunkt t=0)
$a$  Änderungsrate
$t$  Zeit

Wenden wir dies auf unser Beispiel des Bakterienwachstums an: Der Anfangswert ($N_0$) beträgt $1$ und die Änderungsrate $a$ ist $2$, da sich die Bakterien verdoppeln. Damit können wir die Funktionsgleichung aufstellen:

$ N(t) = 1 \cdot 2 ^t$    

oder kürzer geschrieben:

$ N(t) = 2 ^t$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Exponentielle Zunahme - Wachstum

Weitere Beispiele für das exponentielle Wachstum sind: das Wachstum von Bevölkerungen oder auch das Wachstum von Zinsen bei der Zinseszinsrechnung .

Beim exponentiellen Wachstum ist die Änderungsrate größer als 1:

$a>1$

Je größer die Änderungsrate, desto schneller wächst die Funktion.

Die Zunahme kann übrigens auch in Prozent angegeben werden:

$N(t) = N_0 \cdot (1+\frac{p}{100})^t$, wobei gilt: $a = 1+\frac{p}{100}$

Dabei ist $p$ der Prozentsatz. Der Prozentsatz beschreibt das Wachstum prozentual.

Bezogen auf das Beispiel zum exponentiellen Wachstum der Bakterien:

Die Anzahl der Bakterien hat sich hier stündlich verdoppelt, also:

$a=2~~~\rightarrow~~~1+\frac{p}{100}=2~~~\rightarrow~~~p=100$

Die Bakterien vermehren sich stündlich um 100%.

Exponentielle Abnahme - Zerfall

Beim exponentiellen Zerfall liegt die Änderungsrate zwischen $0$ und $1$:

0 < a < 1

Für die allgemeine Funktionsgleichung gibt es wieder zwei Formeln, je nachdem, ob man mit der Änderungsrate ($a$) oder mit der prozentualen Abnahme ($p$) rechnen möchte:

$ N(t) = N_0 \cdot a ^{ t}$    bzw.    $N(t)=N_0 (1-\frac{p}{100}) ^t$ 

Dabei ist $p$ der Prozentsatz, um den sich der Anfangswert verringert. Bei einer Abnahme von $20\%$ ist $p=20$ und $a = 1 - 0,2 = 0,8$.

Beispiel

Bei einem chemischen Stoff zerfällt jedes Jahr $10 \%$ der Masse. Anfangs ist der Stoff $50~kg$ schwer.
Wie viel Masse ist jeweils nach $2$, $5$ und $20$ Jahren noch vorhanden?

Zunächst müssen wir die Funktionsgleichung aufstellen. Es gilt:

$N_0 = 50~kg$
Es handelt sich um eine Abnahme von jährlich $10\%$:   $ a = 1-\frac{10}{100}=1-0,1=0,9$

Wir erhalten die Funktionsgleichung: 

$ N(t) = 50 \cdot 0,9^t$

Mit Hilfe der Funktionsgleichung können wir die Fragen beantworten:

Nach 2 Jahren:

$N(2) =  50  \cdot 0,9^2 = 40,5~kg$

Nach $5$ Jahren:

$N(5) =  50  \cdot 0,9^5 \approx 29,5~kg$

Nach $20$ Jahren:

$N(20)$ =  $50$  · $0,9$$20$ ≈ $6,1~kg$

Die entsprechende Funktion sieht so aus:

funktion_zerfall

Abbildung: exponentielle Abnahme (Zerfall der Masse)

In den Übungsaufgaben kannst du dein neu erworbenes Wissen über exponentielles Wachstum und exponentielle Abnahme vertiefen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Urheber: Simon Wirth, Fabian Serwitzki, Frank Kreuzinger, selbständiger Diplompädagoge, Pirna (Lektorat, fachliche Textkorrekturen und Grafikerstellung)

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Maike möchte Geld sparen. Sie hat 250 € angespart und zahlt diese nun auf ein Sparkonto ein. Sie erhält jährlich 1,5 % Zinsen auf das Geld. Sie fragt sich, wie viel Geld nach 10 Jahren auf dem Konto sein wird. 
Kannst du ihr helfen?

Teste dein Wissen!

In einem Dorf leben heute ca. 500 Menschen. Aus Erfahrung weiß man, dass die Einwohnerzahl jährlich um ca. 10% abnimmt.
Nach wie vielen Jahren werden nur noch ca. 300 Menschen in dem Dorf leben?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

$N(15) = 50.000 $
$a = 1,6$
$N_0 =~?$
Berechne den Anfangswert. Runde dein Ergebnis auf zwei Nachkommastellen.

Der Anfangswert kann durch Umformung der Formel berechnet werden.

$N(t) = N_0 \cdot a^t$     $|:a^t$

$N_0 = \frac{N(t)}{ a^t}$ 

$N_0 = \frac{50000}{1,6^{15}} \approx$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Heinrich ist krank. Er hat ein Bakterium in sich, welches sich stündlich verdreifacht. Morgens um 7 Uhr sind 50 Bakterien in seinem Körper. Um 15 Uhr geht er zum Arzt und bekommt ein Antibiotikum, welches die Bakterienanzahl stündlich halbiert
Wie viele Bakterien sind um 15 Uhr und um 20 Uhr in Heinrichs Körper? Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.05.2025
Alles zu bester Zufriedenheit!
09.05.2025
Sehr flexibel bezüglich Zeiten und Änderung von Fächern.
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.

Weitere Erklärungen & Übungen zum Thema
Mathematik > Funktionen

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8572