Mathematik > Funktionen

Funktionen mit der Quotientenregel ableiten

Inhaltsverzeichnis:

Merke

Merke

Hier klicken zum Ausklappen

Wenn eine Funktion durch $\large{f(x)= \frac{u(x)}{v(x)}}$ darstellbar ist, dann gilt für deren erste Ableitung $\large{f'(x)= \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}}$, wobei $u$ und $v$ Funktionen sind.

Die Quotientenregel ist eine Regel zum Ableiten von Funktionen. Damit kann man Funktionen ableiten, die eine Funktion im Zähler und im Nenner haben. Für dieses Kapitel sind die Potenzregel und die Faktorregel Voraussetzung.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Herleitung der Quotientenregel

Um mit der Quotientenregel rechnen zu können, musst du auf jeden Fall die Potenzregel und die Faktorregel können, denn diese werden beim Ableiten benötigt. Die Quotientenregel beschäftigt sich mit Funktionen, die als Bruchterm dargestellt werden können.

Beispiel für eine solche Funktion:

$\large{f(x)= \frac{3 \cdot x^2 + 5 \cdot x + 13}{4 \cdot x^4 -2}}$

Nun wollen wir eine Formel herleiten, mit deren Hilfe wir eine solche Funktion ableiten können. Wir suchen also eine Formel, mit deren Hilfe wir eine Funktion ableiten können, die sich aus einem Bruch zweier Funktionen zusammensetzt. (Wie du an dem Beispiel sehen kannst, besteht die Funktion aus zwei Funktionen: einer Funktion im Zähler des Bruchs und einer Funktion im Nenner des Bruchs.)

Die Herleitung beginnen wir mit dem Differentialquotienten, also:

$\large{\lim\limits_{h \to 0}\frac{{f(x+h)}-{f(x)}}{h}}$

Da die Funktion hier ein Bruch ist, ersetzen wir $f(x)$ durch $\frac{u(x)}{v(x)}$

Daraus folgt:

$\large{\lim\limits_{h \to 0}\frac{\frac{u(x+h)}{v(x+h)}-\frac{u(x)}{v(x)}}{h}}$

Um es ein wenig übersichtlicher zu machen, schreiben wir dies um:

$\large{\lim\limits_{h \to 0} ( \frac{u(x+h)}{v(x+h)}-\frac{u(x)}{v(x)} ) \cdot \textcolor{green}{\frac{1}{h}}}$

Nun müssen wir die Nenner gleichnamig machen. Dies machen wir, indem wir die beiden Brüche jeweils mit dem Nenner des anderen Bruches erweitern. Nun können wir den Ausdruck auf einen Bruch schreiben:

$\large{\lim\limits_{h \to 0}\frac{u(x+h) \cdot \textcolor{green}{v(x)} - u(x) \cdot \textcolor{green}{v(x+h)}}{\textcolor{blue}{v(x) \cdot v(x+h)}}\cdot \frac{1}{h}}$

Um weiterrechnen zu können, verwenden wir einen Trick. Wir addieren und subtrahieren den Term $u(x) \cdot v(x)$ und erhalten:

$\large{\lim\limits_{h \to 0}\frac{u(x+h) \cdot v(x) \textcolor{green}{- u(x)\cdot v(x) + u(x)\cdot v(x)} - u(x) \cdot v(x+h)}{v(x) \cdot v(x+h)}\cdot \frac{1}{h}}$

Wenn wir geschickt ausklammern erhalten wir:

$\large{\lim\limits_{h \to 0}\frac{\textcolor{green}{[u(x+h)-u(x)]\cdot v(x)}\textcolor{blue}{-u(x)\cdot [v(x+h)-v(x)]}}{h} \cdot \textcolor{red}{\frac{1}{v(x) \cdot v(x+h)}}}$

Zusätzlich haben wir, in $\textcolor{red}{rot}$ markiert, die Nenner vertauscht. Jetzt schreiben wir die jeweiligen Grenzberechnungen einzeln auf und erhalten:

$(\underbrace{\lim\limits_{h \to 0}\frac{u(x+h)-u(x)}{h}}_{=u'(x)} \cdot \underbrace{\lim\limits_{h \to 0} v(x)}_{=v(x)} - \underbrace{\lim\limits_{h \to 0} u(x)}_{=u(x)} \cdot \underbrace{\lim\limits_{h \to 0} \frac{v(x+h)-v(x)}{h}}_{=v'(x)}) \cdot \underbrace{\lim\limits_{h \to 0}\frac {1}{v(x) \cdot v(x+h)}}_{[v(x)]^2}$

Merke

Merke

Hier klicken zum Ausklappen

Jetzt berechnen wir den Limes einzeln für die Terme und erhalten eine sehr übersichtliche Formel:

 $\large{f'(x)= \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}}$

Brüche ableiten mit der Quotientenregel: Beispiel

Schauen wir uns die Formel an einem Beispiel an. Wir nehmen die Funktion von vorhin:

$\large{f(x)= \frac{\textcolor{green}{3 \cdot x^2 + 5 \cdot x + 13}}{\textcolor{blue}{4 \cdot x^4 -2}}}$

In die Formel eingesetzt, erhalten wir:

 $\large{f'(x)= \frac{(6x+5)\cdot(4x^4-2)-(3x^2+5x+13)\cdot(16x^3)}{(4x^4-2)^2}}$

Wenn wir diesen Ausdruck nun ausmultiplizieren und vereinfachen, erhalten wir die Ableitungsfunktion:

$f'(x)= \dfrac{-24x^5-60x^4-208x^3-12x-10}{\left(4x^4-2\right)^2}$   bzw.

$f'(x)= \dfrac{-(24x^5+60x^4+208x^3+12x+10)}{\left(4x^4-2\right)^2}$

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Lektor: Frank Kreuzinger

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die Ableitung der Funktion:
$\large{h(x)=\frac{2x+1}{2x-1}}$

Teste dein Wissen!

Berechne die Ableitung der Funktion:
$\large{g(x)=\frac{x^2}{2}}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Ableitung der Funktion:
$\large{f(x)= \frac{4}{x}}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Ableitung der Funktion:
$\large{f(x)= \frac{3x^2+1}{x}}$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

23.08.2022
Sehr schnell Nachhilfestunden bekommen und Kind konnte den Lehrer bestimmen mit dem das Kind sich wohl fühlte
16.08.2022
Netter Kontakt, super Nachhilfe Lehrer. Die noten meines Kindes hat sich im halben Jahr super verbessert....
12.08.2022 , von Eva B.
Meine Tochter hätte es ohne die exzellente Nachhilfe beim Studienkreis in Mathe und Physik nicht geschafft, Zensuren zu erreichen, die eine Versetzung erlauben.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
Scheitelpunktform einer quadratischen Funktion
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
Quadratischen Funktionen: Normalform und Scheitelpunktform
p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
vergleich
Streckung und Stauchung einer Normalparabel
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Funktionen ableiten - Beispielaufgaben mit Lösungen
Funktionen mit der Faktorregel ableiten
Funktionen mit der Potenzregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Wie wende ich die Kettenregel an?
Wie wende ich die Produktregel an? - Ableitungsregeln
Funktionen mit der Quotientenregel ableiten
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
Kurvendiskussion Schritt für Schritt erklärt
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
koordinatensystem
Was ist eine mathematische Funktion?
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
tangente
Tangentengleichung bestimmen einfach erklärt
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kartesisches Koordinatensystem
Kartesisches Koordinatensystem
Wertetabelle
Wertetabellen erstellen
ablesen-5a
Lineare Funktion bestimmen mithilfe von zwei Punkten
ablesen-2
Lineare Funktion bestimmen mithilfe eines Steigungsdreiecks
beispiel-lineare-funnktion1
Lineare Funktionen - So löst du eine Textaufgabe!
Schnittwinkel zweier linearer Funktionen
Schnittwinkel zweier linearer Funktionen berechnen
steigungsdreick-1a
Steigung einer linearen Funktion bestimmen- Steigungsdreieck
zeichnen-a
So zeichnest du eine lineare Funktion!
beispiel-lineare-funnktion
Lineare Funktionen - Definition und Erklärung
nullstelle-1
Nullstelle einer linearen Funktion bestimmen
schnittpunkte-2a
Schnittpunkt zweier linearer Funktionen berechnen
Eine lineare Funktion und ihre Umkehrfunktion.
Umkehrfunktion einer linearen Funktion berechnen
ablesen-4
y-Achsenabschnitt/Ordinatenabschnitt berechnen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung

In einem unverbindlichen Beratungsgespräch lernen wir uns kennen und Ihr Kind kann unsere Profi-Nachhilfe in 2 Probestunden gratis testen.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8642