Mathematik > Funktionen

Was sind senkrechte, waagerechte und schiefe Asymptoten?

Inhaltsverzeichnis:

Merke

Merke

Hier klicken zum Ausklappen

Man unterscheidet drei verschiedene Arten von Asymptoten:

  1. senkrechte Asymptote
  2. waagerechte Asymptote
  3. schiefe Asymptote

Laut Definition sind Asymptoten Funktionen, denen sich der Graph einer anderen Funktion annähert. Dabei behandeln wir hier Asymptoten, die Geraden sind, also lineare Funktionen. Der Graph einer Funktion kommt der Asymptote immer näher, schneidet oder berührt die Asymptote aber nie. Die Abbildung verdeutlicht dies:

asymptote
Abbildung: Funktion $\textcolor{blue}{f(x) =\frac{1}{x}+x}$ und deren Asymptote $\textcolor{green}{a(x)=x}$

Wir sehen, dass sich die Funktion für immer größer werdende x-Werte der Asymptote annähert.

Asymptoten können allgemein für jeden Grenzwert gesucht werden. Bei rationalen Funktionen sind die Grenzwerte $ \infty$ und $-\infty$. Bei gebrochenrationalen Funktionen kommen noch weitere Grenzwerte hinzu: Die Polstelle bzw. die Definitionslücke müssen auch betrachtet werden.

Wir werden im Folgenden die jeweilige Asymptotenart erklären und Beispiele geben.

Senkrechte Asymptote

Eine senkrechte, oder auch vertikale Asymptote genannt, liegt senkrecht im Koordinatensystem. Sie verläuft von oben nach unten. Das bedeutet, dass die Funktionswerte immer größer oder kleiner werden.

Bei der Definitionslücke einer gebrochenrationalen Funktion liegt immer eine senkrechte Asymptote vor:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Bei der Funktion, die wir im oberen Beispiel betrachtet haben, kann eine weitere Asymptote an den Graph der Funktion gelegt werden. Diese ist senkrecht und befindet sich an der Definitionslücke, an welcher die Funktion nicht definiert ist.

$f(x) =\frac{1}{x}+x$

Die Funktion ist für $x=0$ nicht definiert, da man, wie du sicher weißt, nicht durch $0$ teilen darf.

Schauen wir uns den Grenzwert für x-Werte an, die nah an $0$ kommen:

$\lim_{n \to 0}\frac{1}{x}+x=\infty$

Je näher der x-Wert an $0$ kommt, desto größer wird der dazugehörige y-Wert.

So sieht die eingezeichnete Asymptote $x=0$ dann aus:

senkrechte_asymptote
Abbildung: senkrechte Asymptote
Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Waagerechte Asymptote

Eine waagerechte Asymptote liegt waagerecht im Koordinatensystem. Sie verläuft von links nach rechts. Die Funktion kann für immer größere oder kleinere x-Werte gegen $0$ oder gegen jede andere beliebige Zahl laufen. Es werden die Grenzwerte der Funktion betrachtet.

Gilt $\lim_{n \to \pm \infty}f(x)= a$ für $x$ gegen $+\infty$ oder $-\infty$, nähert sich die Funktion der Konstante $a$. Die Konstante ist dann die Asymptote der Funktion.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$f(x) = \frac{2x+10}{x-5}$

Bilden wir den Grenzwert der Funktion:

$\lim_{n \to \infty}\frac{2x+10}{x-5}=2$

Die Funktion hat eine Asymptote, die die Gleichung $a(x) =2$ hat.

waagerecht_asymptote
Abbildung: waagerecht Asymptote

Schiefe Asymptoten

Eine schiefe Asymptote liegt schief im Koordinatensystem. Das bedeutet, dass sie die Gleichung einer linearen Funktion mit einer definierten Steigung, die nicht gleich $0$ ist, besitzt.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Behandeln wir dazu nochmal die Funktion aus dem ersten Beispiel:

 

schiefe_asymptote
Abbildung: schiefe Asymptote

Die Steigung der Asymptotengerade ist $1$. Die Asymptote liegt schief im Koordinatensystem.

Mit den Übungsaufgaben zu Asymptoten kannst du dein Wissen vertiefen. Dabei wünschen wir dir viel Spaß und Erfolg!

 

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was für eine Asymptotenart liegt bei folgender Funktion vor?
$f(x) = \frac{1}{x^3+x}+x$

Teste dein Wissen!

Welches der folgenden Funktionen ist eine schiefe Asymptote?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die Asymptote, der sich die Funktion $f(x) = \frac{3x^2+5}{x^2-3}$ für $x$ gegen $\infty$ annähert?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie liegt die Asymptote folgender Funktion:
$f(x) = \frac{1}{x^3}+x$ im Koordinatensystem?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8552