Mathematik > Funktionen

Was sind senkrechte, waagerechte und schiefe Asymptoten?

Inhaltsverzeichnis:

Wir betrachten in diesem Lerntext Geraden, an die sich eine Funktion immer mehr annähert. Diese Geraden nennt man auch Asymptoten. Um das etwas näher zu beschreiben, haben wir einige Beispiele aufgezeichnet, damit du besser verstehst, was damit gemeint ist.

Merke

Merke

Hier klicken zum Ausklappen

Man unterscheidet drei verschiedene Arten von Asymptoten:

  1. senkrechte Asymptote
  2. waagerechte Asymptote
  3. schiefe Asymptote

Senkrechte Asymptote

Senkrechte Asymptote
Abbildung: senkrechte Asymptote

Zu sehen ist der Graph der Funktion $f(x) =\frac{x+3}{x^2-9}$

Die Funktion ist nicht für alle Zahlen definiert. Sie besitzt dort Definitionslücken, für die der Nenner Null wird. Diese Definitionslücken befinden sich bei $x=-3$ und $x=3$. Die Lücke bei $x=-3$ ist hebbar, weil ein Punkt an dieser Stelle eingesetzt werden kann, der dann den Graphen „schließt“, also die Definitionslücke behebt. Bei $x=3$ geht das nicht, da der Sprung an dieser Definitionslücke unendlich groß ist. Diese Lücke ist also nicht hebbar. Die eingezeichnete senkrechte Gerade ist eine senkrechte Asymptote.
Das kann man mit Hilfe des Funktionsterms $f(x) =\frac{x+3}{x^2-9}$ feststellen.

Dort wird der Nenner für den $x$-Wert $3$ gleich Null, der Zähler hingegen nicht.

In diesem Fall liegt bei einer gebrochenrationalen Funktion immer eine senkrechte Asymptote vor. Diese Asymptote hat die Gleichung $x=3$

Eine senkrechte Asymptote ist keine Funktion, da sie nicht eindeutig ist.

Auch andere Funktionen besitzen senkrechte Asymptoten, zum Beispiel die Tangensfunktion.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Waagerechte Asymptote

Wie Du im folgenden Bild siehst, nähert sich der Funktionsgraph immer mehr der Gerade $y=2$ an. Das ist auch die waagerechte Asymptote. Eine Methode, eine Gleichung für diese Waagerechte zu ermitteln, ist die Grenzwertbildung. Diesen Grenzwert, den wir hier nur angeben, erhält man über sogenannte Nullfolgen. Für den Grenzwert schreibt man folgendermaßen:

$\lim_{x \to \infty}\frac{2x+10}{x-5}=2$

und liest: Limes von $\frac{2x+10}{x--5}$ für x gegen Unendlich gleich $2$.

Waagerechte Asymptote
Abbildung der Funktion $f(x) =\frac{2x+10}{x-5}$ mit der Asymptote $a(x)=2$

Die Funktion, die du hier siehst hat ebenfalls eine senkrechte Asymptote bei $x=5$. Das liegt daran, dass du für x nicht 5 einsetzen darfst, denn dann ist der Nenner Null und diese Division ist ja nicht erklärt.
Die Funktion im vorherigen Abschnitt nähert sich der $x$-Achse immer weiter an. Diese Achse ist eine waagerechte Asymptote. Das siehst du in der Abbildung oben.

Schiefe Asymptoten

Wir sehen hier die Funktion ${f(x) =\frac{x^2+1}{x}}$

Schiefe Asymptote
Abbildung: schiefe Asymptote

Wie du siehst, besitzt die Funktion eine schiefe Asymptote. Das ist bei einer gebrochenrationalen Funktion immer dann der Fall, wenn der Grad des Zählerpolynoms um eins höher ist als der Grad des Nennerpolynoms. Das Zählerpolynom ist quadratisch (x kommt quadratisch vor), das Nennerpolynom linear (x kommt linear vor).
Eine Gleichung der schiefen Asymptote erhält man in diesem Falle, indem man den Bruch umschreibt:
${\frac{x^2+1}{x}}={\frac{x^2}{x}}+{\frac{1}{x}}=x+{\frac{1}{x}}$
Das Ergebnis dieser Umformung besteht aus einem linearen Teil $(x)$ und einem Bruch ${\frac{1}{x}}$. Der lineare Teil stellt eine Gleichung der schiefen Asymptote dar. Es ist also: $a(x) =x$.
Die $y$-Achse ist hier ebenfalls eine Asymptote, allerdings eine senkrechte bei $x=0$. Das liegt daran, dass du für $x$ nicht Null einsetzen darfst, denn diese Division ist ja nicht erklärt.

Zusammenfassung:

Für die Asymptoten einer gebrochenrationalen Funktion ${f(x) =\frac{u(x)}{v(x)}}$ gilt:

Es gibt

…eine senkrechte Asymptote an der Stelle x, wenn der Nenner für dieses x Null ist, der Zähler dagegen nicht.
…eine waagerechte Asymptote, wenn das Zählerpolynom vom Grad her höchstens gleich dem des Nennerpolynoms ist.
…eine schiefe Asymptote, wenn das Zählerpolynom vom Grad her um genau Eins größer ist als der Grad des Nennerpolynoms.

Mit den Übungsaufgaben zu Asymptoten kannst du dein Wissen vertiefen. Dabei wünschen wir dir viel Spaß und Erfolg!

 

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was für eine Asymptotenart liegt bei folgender Funktion vor?
$f(x) = \frac{1}{x^3+x}+x$

Teste dein Wissen!

Welches der folgenden Funktionen hat eine schiefe Asymptote?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist die Asymptote, der sich die Funktion $f(x) = \frac{3x^2+5}{x^2-3}$ für $x$ gegen $\infty$ annähert?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie liegt die Asymptote folgender Funktion:
$f(x) = \frac{1}{x^3}+x$ im Koordinatensystem?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Funktionen

Weitere Erklärungen & Übungen zum Thema

p-q-formel-3
Nullstellen berechnen mit der p-q-Formel - so geht's!
quadratische-funktion-11
Quadratische Funktionen: Nullstellen berechnen Mitternachtsformel, abc-Formel
Br?cke
Quadratische Funktionen zeichnen
textaufgabe-1
Quadratische Funktionen: Aufgaben mit Lösungen
funktionsgleichung-bestimmen-1
Quadratische Funktionen bestimmen leicht gemacht
Quadratischen Funktionen: Normalform und Scheitelpunktform
Scheitelpunktform einer quadratischen Funktion
Normalparabel nach unten verschoben um 3
Wie verschiebt man eine Normalparabel?
vergleich
Streckung und Stauchung einer Normalparabel
Bitte Beschreibung eingeben
Extremwertaufgaben mit Nebenbedingung lösen
gestreckte_und_gestauchte_funktion
Was ist eine quadratische Funktion?
Bitte Beschreibung eingeben
Eigenschaften von Potenzfunktionen: Übersicht
Potenzfunktionen mit verschiedenen Streckungsfaktoren
Potenzfunktionen zeichnen
potenzfunktionen-beispiele
Potenzfunktionen mit natürlichem Exponenten
Potenzfunktion $\large{x^{-4}}$
Potenzfunktionen mit negativem Exponenten
Potenzfunktion x hoch 8/3
Potenzfunktionen mit rationalem Exponenten
Wurzelfunktion f(x) = \sqrt x
Was ist eine Wurzelfunktion? - Erklärungen
potenzfunktionen-beispiele
Potenzfunktionen: Umkehrfunktion aufstellen leicht erklärt
funktion_x_hoch_2
Monotonie von Potenzfunktionen bestimmen
Funktionen mit der Potenzregel ableiten
Funktionen mit der Faktorregel ableiten
Summenregel: Ableitungen von Funktionen bilden
Wie wende ich die Kettenregel an?
Funktionen mit der Quotientenregel ableiten
Wie wende ich die Produktregel an? - Ableitungsregeln
Wie leite ich eine Funktion ab? Übersicht zu den Ableitungsregeln
Funktionen ableiten - Beispielaufgaben mit Lösungen
ableitung
Ableitung: Bedeutung im Sachzusammenhang
Spezielle Ableitungsregeln: Übersicht und Übungsaufgaben
exponentialfunktion-2-hoch-x
Exponentialfunktionen: Erklärung und Aufgaben
Logarithmusfunktionen log, ln, lg
Logarithmusfunktion: Erklärung und Eigenschaften
e-Funktion
Was sind e-Funktionen? Ableiten und Stammfunktion leicht erklärt
funktion_linearer_wachstum
Lineares Wachstum und lineare Abnahme
funktion_bakterien
Exponentielles Wachstum und exponentielle Abnahme
koordinatensystem
Was ist eine mathematische Funktion?
monotomie
Wie bestimmt man das Monotonieverhalten von Funktionen?
Umkehrfunktion2
Wie bildet man eine Umkehrfunktion?
Kurvendiskussion Schritt für Schritt erklärt
kurvendiskussion_beispiel
Kurvendiskussion - Beispielaufgabe mit Lösung
beispiel-lineare-funnktion
Übersicht: Funktionstypen und ihre Eigenschaften
koordinatensystem
Achsenschnittpunkte von Funktionen berechnen
tangente
Tangentengleichung bestimmen einfach erklärt
asymptote
Was sind senkrechte, waagerechte und schiefe Asymptoten?
Periode einer Sinuskurve
Sinusfunktion und ihre Eigenschaften
Die Kosinusfunktion
Kosinusfunktion und ihre Eigenschaften
Sinusfunktionen mit verschiedenen Streckungsfaktoren und Amplituden
Sinusfunktion - Streckung, Stauchung und Periode
Kosinusfaktor mit verschiedenen Streckungsfaktoren und Amplituden
Kosinusfunktion - Streckung, Stauchung und Periode
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2021-03-02
Wir sind sehr zufrieden.
anonymisiert, vom 2021-03-01
Sehr gut: beim Studienkreis strukturiert vorgeht: was macht ihr gerade in der Schule?, dann gibt es Aufgaben zum Üben und beim Probleme erklären es nochmal die LehrerInnen Als Tipp:dass es nicht mehr möglich wird, dass sich LehrerInnen bei manchen Unterrichtsstunden selber Aufgaben für die SchülerInnen aussuchen Stattdessen sollten die SchülerInnen sich vorm Unterricht eine ,Anweisung" aussuchen
anonymisiert, vom 2021-03-01
In Corona Zeiten ist es sehr schwer für unsere Kinder von zu Hause aus zu lernen .Der Online Unterricht war eine große Herrausvorderung. Jetzt hat sich meine Tochter doch an den Unterricht gewöhnt und kommt sehr gut zurecht . Die Lehrkräfte gehen gut auf sie ein und erklären Schritt für Schritt die Aufgabe. Der Notendurchschnitt hat sich sehr stark verbessert , überall eine Note besser!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
WirtschaftsWoche - Höchstes Kundenvertrauen
DtGV-App-Award 2020
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen Ihre Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Ihre Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir Ihnen telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschen Sie Nachhilfe?
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"

Bereits registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8552