Mathematik > Zahlenlehre und Rechengesetze

Wurzeln potenzieren und radizieren

Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit dem Potenzieren und Radizieren von Wurzeln. Neben den bekannten mathematischen Operationen, wie der Addition, der Subtraktion, der Multiplikation oder der Division, können Wurzeln auch potenziert oder nochmals radiziert werden. 

Potenzieren von Wurzeln

Zunächst einmal müssen wir klären, wie eine potenzierte Wurzel überhaupt aussieht. 

$(\sqrt[2]{2})^ \textcolor{red}{4}$ 

Potenzierte Wurzeln besitzen also neben dem Wurzelexponenten ($2$) einen weiteren Exponenten ($\textcolor{red}{4}$).   

Wie verrechnen wir den zusätzlichen Exponenten?

 $(\sqrt[2]{2})^ \textcolor{red}{4} = \sqrt[2]{2^ \textcolor{red}{4}}$

Wie du siehst, wird der Exponent einfach unter die Wurzel gezogen. Du erhältst unterhalb der Wurzel eine Potenz, die du ausrechnen kannst.

 $\sqrt[2]{2^ \textcolor{red}{4}} = \sqrt[2]{16} = 4$

Merke

Merke

Hier klicken zum Ausklappen

Eine Wurzel wird mit einem Exponenten potenziert, indem man den Radikanden mit dem Exponenten potenziert.

$(\sqrt[m]{x})^\textcolor{red}{n} = \sqrt[m]{x^\textcolor{red}{n}}$

Da das Wurzelziehen in gewisser Weise das Gegenteil des Potenzierens ist, heben sich Wurzelexponent und Exponent auf, wenn sie den gleichen Wert besitzen. In diesem Fall ist die Zahl unterhalb der Wurzel, also der Radikand, das Ergebnis.

$(\sqrt[2]{2})^ \textcolor{red}{2} = \sqrt[2]{2^ \textcolor{red}{2}} = 2$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(\sqrt[3]{2})^6 = \sqrt[3]{2^6} = \sqrt[3]{64} = 4$

$(\sqrt[2]{10})^6 = \sqrt[2]{10^6} = \sqrt[2]{1000000} = 1000$

$(\sqrt[3]{8})^3 = \sqrt[3]{8^3} = 8$

Potenzierte Wurzeln mit Hilfe der Potenzgesetze vereinfachen

Methode

Methode

Hier klicken zum Ausklappen

Folgende Gesetzmäßigkeiten können dir beim Lösen potenzierter Wurzeln helfen:

1.) Potenzschreibweise von Wurzeln: $\sqrt[\textcolor{blue}{n}]{\textcolor{green}{x}} = \textcolor{green}{x}^{\frac{1}{\textcolor{blue}{n}}}$

2.) Potenzierte Potenzen: $\textcolor{black}{a^{m^n} = a^{m\cdot n}}$    

Beispiel

Beispiel

Hier klicken zum Ausklappen

$(\sqrt[3]{2})^6 = (2^{\frac{1}{3}})^6 = 2^{\frac{1}{3} \cdot 6} = 2^2 = 4$

$(\sqrt[2]{10})^6 = (10^{\frac{1}{2}})^6 = 10^{\frac{1}{2} \cdot 6} = 10^3 = 1000$

$(\sqrt[3]{8})^3 = (8^{\frac{1}{3}})^3 = 8^{\frac{1}{3} \cdot 3} = 8^1 = 8$

$(\sqrt[2]{3})^4 = (3^{\frac{1}{2}})^4 = 3^{\frac{1}{2} \cdot 4} = 3^2 = 9$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Radizieren von Wurzeln

Wurzeln können auch radiziert werden, was auf den ersten Blick ungewöhnlich wirkt. Wenn man die Wurzel aus einer Wurzel zieht, schreibt man das so:

$\sqrt[\textcolor{red}{3}]{\sqrt[\textcolor{red}{2}]{729}}$

Eine wichtige Rolle beim Zusammenfassen dieser Doppelwurzeln spielen die beiden Wurzelexponenten ($\textcolor{red}{3}; \textcolor{red}{2}$).

$\sqrt[\textcolor{red}{3}]{\sqrt[\textcolor{red}{2}]{729}} = \sqrt[\textcolor{red}{3} \cdot \textcolor{red}{2}]{729} = \sqrt[\textcolor{red}{6}]{729} = 3$

Merke

Merke

Hier klicken zum Ausklappen

Wurzeln werden radiziert, indem die Wurzelexponenten multipliziert werden und der Radikand beibehalten wird.

$\sqrt[\textcolor{red}{m}]{\sqrt[\textcolor{red}{n}]{x}} = \sqrt[\textcolor{red}{m} \cdot \textcolor{red}{n}]{x}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[3]{\sqrt[3]{1000}} = \sqrt[3 \cdot 3]{1000} = \sqrt[9]{1000}$

$\sqrt[3]{\sqrt{25}} = \sqrt[3 \cdot 2]{25} = \sqrt[6]{25}$

$\sqrt{\sqrt{256}} = \sqrt[2 \cdot 2]{256} = \sqrt[4]{256}$

Anwendung von radizierten Wurzeln

Das Radizieren von Wurzeln wird oft genutzt, um Wurzelterme teilweise auszurechnen oder zu vereinfachen. Dabei wendest du die oben genannte Regel rückwärts an:

$\sqrt[8]{16} = \sqrt[2 \cdot 4]{16} = \sqrt[2]{\sqrt[4]{16}} = \sqrt[2]{2}$

Dazu musst du nur den Wurzelexponenten als ein Produkt aus zwei geeigneten Zahlen schreiben und aus der Wurzel eine Doppelwurzel machen. Das macht natürlich nur dann Sinn, wenn du die innere Wurzel ausrechnen kannst.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[6]{81} = \sqrt[3 \cdot 2]{81} = \sqrt[3]{\sqrt[2]{81}} = \sqrt[3]{9}$

$\sqrt[9]{125} = \sqrt[3 \cdot 3]{125} = \sqrt[3]{\sqrt[3]{125}} = \sqrt[3]{5}$

Das Gesetz besagt außerdem, dass du die Wurzelexponenten bei Doppelwurzeln beliebig drehen kannst. Auch das kannst du dir zunutze machen, um Wurzeln zu vereinfachen:

$\sqrt[2]{\sqrt[3]{9}} = \sqrt[3]{\sqrt[2]{9}} = \sqrt[3]{3}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[3]{\sqrt[5]{27}} = \sqrt[5]{\sqrt[3]{27}} = \sqrt[5]{3}$

$\sqrt[2]{\sqrt[5]{36}} = \sqrt[5]{\sqrt[2]{36}} = \sqrt[5]{6}$

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben! Viel Spaß dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie können radizierte Wurzeln vereinfacht werden?

Teste dein Wissen!

Wie lässt sich diese Wurzel vereinfachen? 

$\sqrt[12]{625}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welches Ergebnis ist richtig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie können potenzierte Wurzeln vereinfacht werden?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Melanie F., vom 2019-11-26
Sichtbare Erfolge in kurzen Zeit.
Sebastian G. S., vom 2019-11-21
Sehr netter Kontaktaufnahme. Professionelle Erklärung der Abläufe und kompetente Lehrer, die die Lerndefizite des Schülers sofort erkennen und der Lernstoff weitergeben können. Die Noten haben sich innerhalb 4 Wochen verbessert. Wir können sie nur weiter empfehlen
anonymisiert, vom 2019-11-17
Bin zufrieden.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7988