Wurzeln addieren und subtrahieren
Ähnlich wie beim Potenzieren musst du auch bei der Wurzelrechnung bestimmte Rechengesetze beachten. In diesem Lerntext beschäftigen wir uns mit der Addition und Subtraktion von Wurzeln. Dabei geht es meist darum, einen Term aus Wurzeln zu vereinfachen, also so weit wie möglich zusammenzufassen.
Zunächst ein wichtiger Hinweis: Wurzeln können nur dann addiert oder subtrahiert werden, wenn sie
- den gleichen Radikanden (der Wert unter der Wurzel) und
- den gleichen Wurzelexponenten (der Wert auf der Wurzel)
besitzen.
Außerdem müssen sie eine solche Form haben: $a \cdot \sqrt{b} $
Wurzeln addieren
Zwei Wurzeln werden addiert, indem man ihre Koeffizienten addiert und den Wurzelexponenten und den Radikanden beibehält.
$\textcolor{red}{6} \cdot \sqrt[2]{3} + \textcolor{red}{4} \cdot \sqrt[2]{3} = \textcolor{red}{(6 + 4)} \cdot \sqrt[2]{3} = \textcolor{red}{10} \cdot \sqrt[2]{3}$
Ist der Koeffizient $1$, wird er meist nicht mit aufgeschrieben.
$\sqrt[7]{6} + 3 \cdot \sqrt[7]{6} = (1 + 3) \cdot \sqrt[7]{6} = 4 \cdot \sqrt[7]{6}$
Beispiel
$7 \cdot \sqrt[5]{3} + 2 \cdot \sqrt[5]{3} = 9 \cdot \sqrt[5]{3}$
$12 \cdot \sqrt{5} + 5 \cdot \sqrt{5} = 17 \cdot \sqrt{5}$
$\sqrt[3]{3} + \sqrt[3]{3} = 2 \cdot \sqrt[3]{3}$
Merke
Zwei Wurzeln werden addiert, indem man ihre Koeffizienten addiert und den Wurzelexponenten und den Radikanden beibehält.
$\textcolor{red}{b} \cdot \sqrt[n]{a} + \textcolor{red}{c} \cdot \sqrt[n]{a} = \textcolor{red}{(b + c)} \cdot \sqrt[n]{a}$
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Wurzeln subtrahieren
Das Subtrahieren von Wurzeln funktioniert ganz ähnlich wie das Addieren. Zwei Wurzeln werden subtrahiert, indem man ihre Koeffizienten subtrahiert und den Wurzelexponenten und den Radikanden beibehält.
$\textcolor{red}{6} \cdot \sqrt[2]{3} - \textcolor{red}{4} \cdot \sqrt[2]{3} = \textcolor{red}{(6 - 4)} \cdot \sqrt[2]{3} = \textcolor{red}{2} \cdot \sqrt[2]{3}$
Beispiel
$10 \cdot \sqrt[4]{24} - 2 \cdot \sqrt[4]{24} = 8 \cdot \sqrt[4]{24}$
$5 \cdot \sqrt{3} - \sqrt{3} = 4 \cdot \sqrt{3}$
$3 \cdot \sqrt[2]{3} - \sqrt[2]{3} = 2 \cdot \sqrt[2]{3}$
Merke
Zwei Wurzeln werden subtrahiert, indem man ihre Koeffizienten subtrahiert und den Wurzelexponenten und den Radikanden beibehält.
$\textcolor{red}{b} \cdot \sqrt[n]{a} - \textcolor{red}{c} \cdot \sqrt[n]{a} = \textcolor{red}{(b - c)} \cdot \sqrt[n]{a}$
Methode
Achtung!
Sehr oft werden Wurzeln fälschlicherweise auf dieselbe Weise addiert bzw. subtrahiert, wie sie multipliziert werden:
$\sqrt{4} \cdot \sqrt{5} = \sqrt{4 \cdot 5}~~~~~~~~\textcolor{green}{RICHTIG}$
$\sqrt{4} \pm \sqrt{5} = \sqrt{4 \pm 5}~~~~\textcolor{red}{FALSCH}$
Wann können Wurzeln nicht addiert oder subtrahiert werden?
Das Addieren und Subtrahieren von Wurzeln ist an viele Bedingungen geknüpft. Oft werden nicht alle diese Bedingungen erfüllt und du kannst die Wurzeln gar nicht miteinander verrechnen. Schauen wir uns an auf welche Probleme du treffen kannst:
1. Unterschiedliche Wurzelexponenten
Ist der Wurzelexponent nicht gleich, können Wurzeln nicht durch Addieren oder Subtrahieren zusammengefasst werden.
$\sqrt[\textcolor{red}{n}]{a} \pm \sqrt[\textcolor{red}{m}]{a} = / $
Beispiel
$\sqrt[\textcolor{red}{2}]{16} \pm \sqrt[\textcolor{red}{3}]{16}$
$\sqrt[\textcolor{red}{4}]{256} \pm \sqrt[\textcolor{red}{2}]{256}$
2. Unterschiedliche Radikanden
Du kannst auch keine Wurzeln durch Addieren oder Subtrahieren zusammenfassen, wenn sich unterhalb der Wurzel unterschiedliche Zahlen befinden.
$\sqrt[n]{\textcolor{red}{a}} \pm \sqrt[n]{\textcolor{red}{b}} = /$
Beispiel
$\sqrt{\textcolor{red}{5}} \pm \sqrt{\textcolor{red}{16}}$
$\sqrt[4]{\textcolor{red}{310}} \pm \sqrt[4]{\textcolor{red}{28}}$
Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!
Hol dir Hilfe beim Studienkreis!
Selbst-Lernportal Online
Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!
- Online-Chat 14-20 Uhr
- 700 Lerntexte & Videos
- Über 250.000 Übungsaufgaben
Einzelnachhilfe Online
Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!
- Online-Nachhilfe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Nachhilfe in deiner Nähe
Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Nachhilfe in deiner Nähe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer