Suche
Kontakt

Wurzelrechnung: Übersicht über die Rechengesetze
Mathematik > Zahlenlehre und Rechengesetze

Wurzelrechnung: Übersicht über die Rechengesetze! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Es gibt viele Gesetzmäßigkeiten, die dir das Rechnen mit Wurzeln erleichtern. Wurzeln können addiert, miteinander multipliziert, voneinander subtrahiert, durcheinander dividiert, potenziert und selbst radiziert werden. Um bei all diesen mathematischen Operationen den Überblick zu behalten, fassen wir in diesem Lerntext alle Rechengesetze der Wurzelrechnung nochmal zusammen.

Wurzeln addieren

Wurzeln können nur unter ganz bestimmten Bedingungen addiert werden. Zum einen müssen sie gleichnamig sein, das heißt, sie müssen denselben Wurzelexponenten besitzen. Zum anderen müssen sie auch denselben Radikanden besitzen, das heißt, auch die Zahl unter der Wurzel muss dieselbe sein. Die eigentliche Addition findet zwischen den beiden Koeffizienten der Wurzeln statt.

Merke

Zwei Wurzeln werden addiert, indem man ihre Koeffizienten addiert und den Wurzelexponenten und den Radikanden beibehält.

$\textcolor{red}{b} \cdot \sqrt[n]{a} + \textcolor{red}{c} \cdot \sqrt[n]{a} = \textcolor{red}{(b + c)} \cdot \sqrt[n]{a}$

Wurzeln subtrahieren

Ähnlich wie bei der Addition können Wurzeln auch nur dann voneinander subtrahiert werden, wenn sie denselben Wurzelexponenten und denselben Radikanden besitzen. Die eigentliche Subtraktion findet dann auch hier wieder zwischen den beiden Koeffizienten der Wurzeln statt.

Merke

Zwei Wurzeln werden subtrahiert, indem man ihre Koeffizienten subtrahiert und den Wurzelexponenten und den Radikanden beibehält.

$\textcolor{red}{b} \cdot \sqrt[n]{a} - \textcolor{red}{c} \cdot \sqrt[n]{a} = \textcolor{red}{(b - c)} \cdot \sqrt[n]{a}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Wurzeln multiplizieren

Wurzeln müssen gleichnamig sein, um miteinander multipliziert werden zu können. Mit Hilfe der Erweiterung des Wurzelexponenten können wir aus ungleichnamigen Wurzeln gleichnamige machen. Die Zahlen unterhalb der Wurzeln (die Radikanden) können unterschiedlich oder gleich sein.

Merke

Gleichnamige Wurzeln werden multipliziert, indem die Radikanden miteinander multipliziert werden und zusammen unter eine Wurzel geschrieben werden.

$\sqrt[n]{\textcolor{blue}{a}} \cdot \sqrt[n]{\textcolor{red}{b}} = \sqrt[n]{\textcolor{blue}{a} \cdot \textcolor{red}{b}}$

Ungleichnamige Wurzeln werden multipliziert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Wurzeln dividieren

Ähnlich wie bei der Multiplikation funktioniert auch die Division von Wurzeln nur bei gleichnamigen Wurzeln. Sind die Wurzeln ungleichnamig, müssen sie zunächst gleichnamig gemacht werden, mit Hilfe der Erweiterung des Wurzelexponenten. Die Zahlen unterhalb der Wurzel (die Radikanden) können unterschiedlich oder gleich sein.

Merke

Gleichnamige Wurzeln werden dividiert, indem die Radikanden durch einander dividiert werden und zusammen unter eine Wurzel geschrieben werden.

$\frac{\sqrt[n]{\textcolor{blue}{a}}}{\sqrt[n]{\textcolor{red}{b}}} = \sqrt[n]{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}$

Ungleichnamige Wurzeln werden dividiert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Wurzeln potenzieren

Das Potenzieren von Wurzeln funktioniert bei jeder Art von Wurzel und ist an keine mathematischen Bedingungen geknüpft. Neben dieser Regel können potenzierte Wurzeln auch mit Hilfe der Potenzgesetze vereinfacht werden.

Merke

Eine Wurzel wird mit einem Exponenten potenziert, indem man den Radikanden mit dem Exponenten potenziert.

$(\sqrt[m]{x})^\textcolor{red}{n} = \sqrt[m]{x^\textcolor{red}{n}}$

Wurzeln radizieren

Auch wenn es ungewöhnlich aussieht, kann auch von Wurzeln eine Wurzel gezogen werden. Die Wurzel wird also nochmal radiziert. Diese Doppelwurzeln lassen sich sehr leicht vereinfachen. In den meisten Fällen wird diese Regel rückwärts angewandt, um Wurzeln teilweise ausrechnen zu können.

Merke

Wurzeln werden radiziert, indem die Wurzelexponenten multipliziert werden und der Radikand beibehalten wird.

$\sqrt[\textcolor{red}{m}]{\sqrt[\textcolor{red}{n}]{x}} = \sqrt[\textcolor{red}{m} \cdot \textcolor{red}{n}]{x}$

Teste dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie lässt sich diese Wurzel vereinfachen?

$\sqrt[4]{\sqrt{85}}$

Teste dein Wissen!

Wie lässt sich diese Wurzel vereinfachen? 

$(\sqrt[5]{32})^2$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lassen sich diese Wurzeln miteinander verrechnen? 

$\sqrt{100}\cdot \sqrt{2}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lassen sich die Wurzeln miteinander verrechnen? 

$2 \cdot \sqrt[3]{50} + 3 \cdot  \sqrt[3]{50}$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
15.01.2025 , von Simone K.
Wir sind sehr zufrieden mit dem Studienkreis!
14.01.2025 , von Madlen M.
Meine Tochter geht sehr gerne hin, kurzfristig konnten wir noch eine zweite Stunde/Fach dazubuchen. Es wird sehr auf die Größe der Gruppe geachtet und das es von der Klassenstufe zusammenpasst. So kann es bleiben.
13.01.2025 , von Osman A.
Wir glauben, dass es besser wäre, die Eltern der Schüler, die alle sechs Monate hierher kommen, zu treffen und ihnen allgemeine Informationen über die Schüler zu geben.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7983