Mathematik > Zahlenlehre und Rechengesetze

Wurzelrechnung: Übersicht über die Rechengesetze

Inhaltsverzeichnis:

Es gibt viele Gesetzmäßigkeiten, die dir das Rechnen mit Wurzeln erleichtern. Wurzeln können addiert, miteinander multipliziert, voneinander subtrahiert, durcheinander dividiert, potenziert und selbst radiziert werden. Um bei all diesen mathematischen Operationen den Überblick zu behalten, fassen wir in diesem Lerntext alle Rechengesetze der Wurzelrechnung nochmal zusammen.

Wurzeln addieren

Wurzeln können nur unter ganz bestimmten Bedingungen addiert werden. Zum einen müssen sie gleichnamig sein, das heißt, sie müssen denselben Wurzelexponenten besitzen. Zum anderen müssen sie auch denselben Radikanden besitzen, das heißt, auch die Zahl unter der Wurzel muss dieselbe sein. Die eigentliche Addition findet zwischen den beiden Koeffizienten der Wurzeln statt.

Merke

Merke

Hier klicken zum Ausklappen

Zwei Wurzeln werden addiert, indem man ihre Koeffizienten addiert und den Wurzelexponenten und den Radikanden beibehält.

$\textcolor{red}{b} \cdot \sqrt[n]{a} + \textcolor{red}{c} \cdot \sqrt[n]{a} = \textcolor{red}{(b + c)} \cdot \sqrt[n]{a}$

Wurzeln subtrahieren

Ähnlich wie bei der Addition können Wurzeln auch nur dann voneinander subtrahiert werden, wenn sie denselben Wurzelexponenten und denselben Radikanden besitzen. Die eigentliche Subtraktion findet dann auch hier wieder zwischen den beiden Koeffizienten der Wurzeln statt.

Merke

Merke

Hier klicken zum Ausklappen

Zwei Wurzeln werden subtrahiert, indem man ihre Koeffizienten subtrahiert und den Wurzelexponenten und den Radikanden beibehält.

$\textcolor{red}{b} \cdot \sqrt[n]{a} - \textcolor{red}{c} \cdot \sqrt[n]{a} = \textcolor{red}{(b - c)} \cdot \sqrt[n]{a}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Wurzeln multiplizieren

Wurzeln müssen gleichnamig sein, um miteinander multipliziert werden zu können. Mit Hilfe der Erweiterung des Wurzelexponenten können wir aus ungleichnamigen Wurzeln gleichnamige machen. Die Zahlen unterhalb der Wurzeln (die Radikanden) können unterschiedlich oder gleich sein.

Merke

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden multipliziert, indem die Radikanden miteinander multipliziert werden und zusammen unter eine Wurzel geschrieben werden.

$\sqrt[n]{\textcolor{blue}{a}} \cdot \sqrt[n]{\textcolor{red}{b}} = \sqrt[n]{\textcolor{blue}{a} \cdot \textcolor{red}{b}}$

Ungleichnamige Wurzeln werden multipliziert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Wurzeln dividieren

Ähnlich wie bei der Multiplikation funktioniert auch die Division von Wurzeln nur bei gleichnamigen Wurzeln. Sind die Wurzeln ungleichnamig, müssen sie zunächst gleichnamig gemacht werden, mit Hilfe der Erweiterung des Wurzelexponenten. Die Zahlen unterhalb der Wurzel (die Radikanden) können unterschiedlich oder gleich sein.

Merke

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden dividiert, indem die Radikanden durch einander dividiert werden und zusammen unter eine Wurzel geschrieben werden.

$\frac{\sqrt[n]{\textcolor{blue}{a}}}{\sqrt[n]{\textcolor{red}{b}}} = \sqrt[n]{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}$

Ungleichnamige Wurzeln werden dividiert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Wurzeln potenzieren

Das Potenzieren von Wurzeln funktioniert bei jeder Art von Wurzel und ist an keine mathematischen Bedingungen geknüpft. Neben dieser Regel können potenzierte Wurzeln auch mit Hilfe der Potenzgesetze vereinfacht werden.

Merke

Merke

Hier klicken zum Ausklappen

Eine Wurzel wird mit einem Exponenten potenziert, indem man den Radikanden mit dem Exponenten potenziert.

$(\sqrt[m]{x})^\textcolor{red}{n} = \sqrt[m]{x^\textcolor{red}{n}}$

Wurzeln radizieren

Auch wenn es ungewöhnlich aussieht, kann auch von Wurzeln eine Wurzel gezogen werden. Die Wurzel wird also nochmal radiziert. Diese Doppelwurzeln lassen sich sehr leicht vereinfachen. In den meisten Fällen wird diese Regel rückwärts angewandt, um Wurzeln teilweise ausrechnen zu können.

Merke

Merke

Hier klicken zum Ausklappen

Wurzeln werden radiziert, indem die Wurzelexponenten multipliziert werden und der Radikand beibehalten wird.

$\sqrt[\textcolor{red}{m}]{\sqrt[\textcolor{red}{n}]{x}} = \sqrt[\textcolor{red}{m} \cdot \textcolor{red}{n}]{x}$

Teste dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie lässt sich diese Wurzel vereinfachen?

$\sqrt[4]{\sqrt{85}}$

Teste dein Wissen!

Wie lässt sich diese Wurzel vereinfachen? 

$(\sqrt[5]{32})^2$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lassen sich diese Wurzeln miteinander verrechnen? 

$\sqrt{100}\cdot \sqrt{2}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lassen sich die Wurzeln miteinander verrechnen? 

$2 \cdot \sqrt[3]{50} + 3 \cdot  \sqrt[3]{50}$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Erika F., vom 2020-11-19
Mein Kind ist erst kurz dabei geht sehr gerne hin alle sehr freundlich für alles Andere ist es noch zu früh
Nadine N., vom 2020-11-17
Meine Tochter geht gern hin.
anonymisiert, vom 2020-11-16
Sehr gute rundum Betreuung!
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen Ihre Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Ihre Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir Ihnen telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschen Sie Nachhilfe?
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"

Bereits registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7983