Mathematik > Zahlenlehre und Rechengesetze

Wie bestimme ich eine Definitionsmenge?

Inhaltsverzeichnis:

Die Definitionsmenge und die Lösungsmenge sind in der Mathematik wichtige Werte, mit denen Funktionen näher bestimmt werden können. In diesem Kapitel werden wir die beiden Begriffe erklären und dazu Beispiele geben. Mit den Übungen zu diesem Kapitel kannst du dein Wissen festigen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Definitionsmenge

Die Definitionsmenge oder auch der Definitionsbereich beschreibt den Bereich, in dem eine Funktion definiert ist. Dies ist notwendig, denn in der Schulmathematik gibt es zwei Regeln, die nicht gebrochen werden dürfen:

$\cdot \; Teile\; niemals \;durch \;Null.$

$\cdot \; Aus \;einer\; negativen\; Zahl\; darf \;man \;nicht\; die\; Wurzel \;ziehen.$

Damit diese beiden Regeln auch eingehalten werden, gibt es den Definitionsbereich. Dieser sagt dir, welche Werte x in der Funktion überhaupt annehmen darf. Betrachten wir das Ganze an einem Beispiel:

Beispiel

Beispiel

Hier klicken zum Ausklappen

Gegeben ist der die Funktion $f(x)= \large{\frac{2}{x}}$.

Diese Funktion hat den Definitionsbereich: $\mathbb{D}=\{x ∈ ℝ| x \neq 0 \}$

Die Funktion kann also alle x-Werte annehmen, bis auf den Wert $0$, denn eine $0$ im Nenner macht den Bruch unlösbar. Der Definitionsbereich regelt also, welche Werte nicht eingesetzt werden dürfen

Genauso sieht es bei einem $x$ unterhalb einer Wurzel aus. Bei der folgenden Funktion darf $x$ nur positive Werte annehmen:

$\sqrt{x}$

Wir schreiben: $\mathbb{D} = \{x ∈ ℝ| x \ge 0\}$ oder $\mathbb{D}=ℝ^{\ge 0}$.

Merke

Merke

Hier klicken zum Ausklappen

Der Definitionsbereich ist der Bereich, in dem die Funktion lösbar ist. Er umfasst also alle Werte, die x annehmen darf, der Definitionsbereich regelt, welche Werte nicht eingesetzt werden dürfen

$D= \{ x ∈ ℝ| x \neq Wert\}$ oder verkürzt $\mathbb{D}=ℝ^{\ge Wert}$.

Lösungsmenge

Die Lösungsmenge bestimmt den oder die Werte, die für $x$ eingesetzt werden, damit man die Funktion lösen kann. Hierbei gibt es drei verschiedene Möglichkeiten für eine Lösungsmenge:

Die Funktion hat keine Lösung

Die Funktion lässt sich nicht lösen, weil etwa ein Wert unter der Wurzel entsteht, der negativ ist. Hierbei gibt es dann keine Lösungsmenge. Man schreibt hierfür die leere Menge: $\mathbb{L}= \{\}$. 

Die Funktion hat eine Lösung

Die Funktion hat genau eine Lösung. Hierbei wird der Wert dann in geschweifte Klammern geschrieben, etwa: $\mathbb{L}= \{2\}$.

Die Funktion hat mehrere Lösungen

Die Funktion kann aber auch mehrere Lösungen haben, wenn du etwa eine lösbare Wurzel hast. Hierbei werden dann die beiden Werte angegeben, die möglich sind. Getrennt werden die Werte durch ein Komma, etwa: $\mathbb{L}= \{-3,3\}$.

Merke

Merke

Hier klicken zum Ausklappen

Jede Funktion hat eine Lösungsmenge. Diese kann entweder keinen, einen oder mehrere Werte beinhalten, die für die Variable eingesetzt werden können, damit die Funktion lösbar ist. Man schreibt:

$\mathbb{L}= \{\}$. Hierbei wird in die geschweiften Klammern die Lösung eingetragen. 

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Bilde die Definitions- und die Lösungsmenge:
$x = 4$

Teste dein Wissen!

Was ist der Unterschied zwischen der Lösungs- und der Definitionsmenge?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme die Definitions- und dieLösungsmenge:
$f(x)=\sqrt{x}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bestimme die Lösungs- und die Definitionsmenge.
$x^2=4$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7937