Wie bestimme ich eine Definitionsmenge?
Die Definitionsmenge und die Lösungsmenge sind in der Mathematik wichtige Werte, mit denen Funktionen näher bestimmt werden können. In diesem Kapitel werden wir die beiden Begriffe erklären und dazu Beispiele geben. Mit den Übungen zu diesem Kapitel kannst du dein Wissen festigen.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Definitionsmenge
Die Definitionsmenge oder auch der Definitionsbereich beschreibt den Bereich, in dem eine Funktion definiert ist. Dies ist notwendig, denn in der Schulmathematik gibt es zwei Regeln, die nicht gebrochen werden dürfen:
$\cdot \; Teile\; niemals \;durch \;Null.$
$\cdot \; Aus \;einer\; negativen\; Zahl\; darf \;man \;nicht\; die\; Wurzel \;ziehen.$
Damit diese beiden Regeln auch eingehalten werden, gibt es den Definitionsbereich. Dieser sagt dir, welche Werte x in der Funktion überhaupt annehmen darf. Betrachten wir das Ganze an einem Beispiel:
Beispiel
Beispiel
Gegeben ist der die Funktion $f(x)= \large{\frac{2}{x}}$.
Diese Funktion hat den Definitionsbereich: $\mathbb{D}=\{x ∈ ℝ| x \neq 0 \}$
Die Funktion kann also alle x-Werte annehmen, bis auf den Wert $0$, denn eine $0$ im Nenner macht den Bruch unlösbar. Der Definitionsbereich regelt also, welche Werte nicht eingesetzt werden dürfen.
Genauso sieht es bei einem $x$ unterhalb einer Wurzel aus. Bei der folgenden Funktion darf $x$ nur positive Werte annehmen:
$\sqrt{x}$
Wir schreiben: $\mathbb{D} = \{x ∈ ℝ| x \ge 0\}$ oder $\mathbb{D}=ℝ^{\ge 0}$.
Merke
Merke
Der Definitionsbereich ist der Bereich, in dem die Funktion lösbar ist. Er umfasst also alle Werte, die x annehmen darf, der Definitionsbereich regelt, welche Werte nicht eingesetzt werden dürfen.
$D= \{ x ∈ ℝ| x \neq Wert\}$ oder verkürzt $\mathbb{D}=ℝ^{\ge Wert}$.
Lösungsmenge
Die Lösungsmenge bestimmt den oder die Werte, die für $x$ eingesetzt werden, damit man die Funktion lösen kann. Hierbei gibt es drei verschiedene Möglichkeiten für eine Lösungsmenge:
Die Funktion hat keine Lösung
Die Funktion lässt sich nicht lösen, weil etwa ein Wert unter der Wurzel entsteht, der negativ ist. Hierbei gibt es dann keine Lösungsmenge. Man schreibt hierfür die leere Menge: $\mathbb{L}= \{\}$.
Die Funktion hat eine Lösung
Die Funktion hat genau eine Lösung. Hierbei wird der Wert dann in geschweifte Klammern geschrieben, etwa: $\mathbb{L}= \{2\}$.
Die Funktion hat mehrere Lösungen
Die Funktion kann aber auch mehrere Lösungen haben, wenn du etwa eine lösbare Wurzel hast. Hierbei werden dann die beiden Werte angegeben, die möglich sind. Getrennt werden die Werte durch ein Komma, etwa: $\mathbb{L}= \{-3,3\}$.
Merke
Merke
Jede Funktion hat eine Lösungsmenge. Diese kann entweder keinen, einen oder mehrere Werte beinhalten, die für die Variable eingesetzt werden können, damit die Funktion lösbar ist. Man schreibt:
$\mathbb{L}= \{\}$. Hierbei wird in die geschweiften Klammern die Lösung eingetragen.
Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!
Teste dein Wissen!
Bilde die Definitions- und die Lösungsmenge:
$x = 4$
Was ist der Unterschied zwischen der Lösungs- und der Definitionsmenge?
Bestimme die Definitions- und dieLösungsmenge:
$f(x)=\sqrt{x}$
Bestimme die Lösungs- und die Definitionsmenge.
$x^2=4$
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema































Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar
(kostenlos und jederzeit)