Suche
Kontakt

Drittes Logarithmusgesetz: Logarithmus einer Potenz
Mathematik > Zahlenlehre und Rechengesetze

Drittes Logarithmusgesetz - Logarithmus einer Potenz! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit dem dritten Logarithmusgesetz.

Merke

3. Logarithmusgesetz:

Der Logarithmus einer Potenz entspricht dem Exponenten mal dem Logarithmus der Basis der Potenz.

$\log_{a}(x^y) = y\cdot \log_{a}(x)$

Beispiele für das dritte Logarithmusgesetz

Beispiel

(1) $\log_{2}(64^3) = 3\cdot \log_{2}(64) = 3 \cdot 6 = 18$

(2) $\log_{5}(25^9) = 9\cdot \log_{5}(25) = 9 \cdot 2 = 18$

(3) $\log_{7}(343^{12}) = 12 \cdot \log_{7}(343) = 12 \cdot 3 = 36$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Herleitung des dritten Logarithmusgesetzes

Wann brauchen wir das dritte Logarithmusgesetz? Schauen wir uns folgendes Beispiel an:

$\log_{a}(x^y)$

Wieso soll das ein Problem sein? Man kann die Potenz doch einfach ausrechnen und hat eine ganz normale Dezimalzahl im Logarithmus: $\log_{2}(5^2) = \log_{2}(25) = 0,215$

Doch was machen wir, wenn der Exponent im Logarithmus unbekannt ist: $\log_{2}(5^x)$

Um dieses mathematische Problem zu lösen, müssen wir $x$ isolieren. Wie wir einen unbekannten Exponenten isolieren, ist dir natürlich klar: Wir wenden den Logarithmus an. Aber was, wenn dieser unbekannte Exponent selber schon im Logarithmus steht? Soll man etwa doppelt logarithmieren? Die Antwort ist zum Glück nein, denn es gibt eine viel einfachere Variante. Dazu muss man die Regeln des 3. Logarithmusgesetztes befolgen, welches wir jetzt genauer herleiten wollen.

Um den Gedankengang richtig verstehen zu können, schauen wir uns erstmal ein Beispiel an, bei dem der Exponent bekannt ist. Anschließend erhalten wir eine Gesetzmäßigkeit, mit der sich dann auch unbekannte Exponenten berechnen lassen.

$\log_{3}(3^5)$

Gehen wir dieses Problem so an, wie wir es von den Potenzen her gewöhnt sind. Wir schreiben diese erst einmal aus:

$\log_{3}(3^5) = \log_{3}(3\cdot 3\cdot 3\cdot 3\cdot 3)$

Wir erhalten einen Logarithmus mit einem Produkt in der Klammer. Und schon kannst du eben Erlerntes anwenden, denn du weißt, wie man Produkte im Logarithmus auch anders schreiben kann. Wenn nicht, gehe noch einmal zurück zum ersten Logarithmusgesetz, laut dem der Logarithmus eines Produktes der Summe der Logarithmen der Faktoren entspricht. Wenden wir diese Regeln an, erhalten wir folgendes:

$\log_{3}(3\cdot 3\cdot 3\cdot 3\cdot 3) = \log_{3}(3) + \log_{3}(3) + \log_{3}(3) + \log_{3}(3) + \log_{3}(3)$

Die einzelnen Terme dieser Summe sind gleich, somit kannst du sie zusammenfassen zu:

$\log_{3}(3) + \log_{3}(3) + \log_{3}(3) + \log_{3}(3) + \log_{3}(3) = 5\cdot \log_{3}(3) $

Methode

Achtung: dein Vorwissen ist gefragt!

Summen lassen sich wie folgt zusammenfassen: $ a + a + a = 3\cdot a$

Vergleichen wir die zwei Schreibweisen, sollte dir etwas auffallen:

$\log_{3}(3^5) = 5\cdot \log_{3}(3) $

Wie du siehst wird der Exponent einfach vor den Logarithmus gezogen. Diese Regel lässt sich verallgemeinern und gibt dir eine denkbar einfache Methode einen unbekannten Exponenten zu isolieren.

Merke

3. Logarithmusgesetz:

Der Logarithmus einer Potenz entspricht dem Exponenten mal dem Logarithmus der Basis.

$\log_{a}(x^y) =  y\cdot \log_{a}(x)$

Es gibt noch weitere Rechengesetze für Logarithmen eines Produkts, eines Quotienten oder einer Wurzel

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie lässt sich dieser Logarithmus noch ausdrücken?

$log_{10}(4^7) $

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Wie lässt sich dieser Logarithmus noch ausdrücken?

$5 \cdot \log_{3}(7)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lässt sich dieser Logarithmus noch ausdrücken?

$\log_{5}(6^2) $

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Ergänze die fehlende Zahl mit Hilfe des dritten Logarithmusgesetzes. Markiere die richtige Antwort!

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
15.01.2025 , von Simone K.
Wir sind sehr zufrieden mit dem Studienkreis!
14.01.2025 , von Madlen M.
Meine Tochter geht sehr gerne hin, kurzfristig konnten wir noch eine zweite Stunde/Fach dazubuchen. Es wird sehr auf die Größe der Gruppe geachtet und das es von der Klassenstufe zusammenpasst. So kann es bleiben.
13.01.2025 , von Osman A.
Wir glauben, dass es besser wäre, die Eltern der Schüler, die alle sechs Monate hierher kommen, zu treffen und ihnen allgemeine Informationen über die Schüler zu geben.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7928