Mathematik > Zahlenlehre und Rechengesetze

Wurzeln gleichnamig machen: Wurzelexponent erweitern

Inhaltsverzeichnis:

Wurzeln können anhand ihres Wurzelexponenten miteinander verglichen werden und in gleichnamige und ungleichnamige Wurzeln unterteilt werden. Für viele Rechnungen, wie etwa das Multiplizieren oder Dividieren von Wurzeln, benötigt man gleichnamige Wurzeln. Es ist daher wichtig, dass du weißt, wie man ungleichnamige Wurzeln in gleichnamige Wurzeln umformt. Dies macht man, indem man den Wurzelexponenten erweitert. Doch schauen wir uns zunächst an, was überhaupt gleichnamige und ungleichnamige Wurzeln sind.

Gleichnamige und ungleichnamige Wurzeln

Ob Wurzeln gleichnamig oder ungleichnamig sind, hängt vom Wurzelexponenten ab, das heißt von der Zahl, die auf der Wurzel steht. So gelten zwei Wurzeln als gleichnamig, wenn sie denselben Wurzelexponenten besitzen und als ungleichnamig, wenn sie unterschiedliche Wurzelexponenten besitzen.

Merke

Merke

Hier klicken zum Ausklappen

Wurzeln sind gleichnamig, wenn sie denselben Wurzelexponenten besitzen:

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{n}]{b}$

Wurzeln sind ungleichnamig, wenn sie unterschiedliche Wurzelexponenten besitzen:

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{m}]{b}$

Das heißt natürlich auch, dass du immer zwei Wurzeln benötigst, um die Begriffe gleichnamig und ungleichnamig anwenden zu können, da du immer zwei Wurzelexponenten miteinander vergleichst. Der Wert unterhalb der Wurzel, den man auch Radikand nennt, spielt dabei keine Rolle. Die Radikanden der beiden Wurzeln können also gleich oder auch ungleich sein.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln

$\sqrt{24}$ und $\sqrt[3]{56}$

$\sqrt[3]{90}$ und $\sqrt[5]{90}$

Gleichnamige Wurzeln

$\sqrt{54}$ und $\sqrt{9}$

$\sqrt[4]{543}$ und $\sqrt[4]{670}$

$\sqrt[3]{27}$ und $\sqrt[3]{27}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde


Den Wurzelexponenten erweitern: aus ungleichnamig wird gleichnamig

Ungleichnamige Wurzeln stellen dich häufig vor ein Problem, so kannst du beispielsweise nur gleichnamige Wurzeln multiplizieren oder dividieren. Umso wichtiger ist es, dass du weißt, wie man aus ungleichnamigen Wurzeln gleichnamige Wurzeln macht. Die Methode, die du dafür anwenden musst, nennt sich Erweiterung des Wurzelexponenten.

Betrachten wir folgendes Beispiel zweier ungleichnamiger Wurzeln:

$\sqrt[2]{24}$ und $\sqrt[3]{56}$

In einem ersten Schritt musst du das sogenannte kleinste gemeinsame Vielfache (kgV) der beiden Wurzelexponenten herausfinden.

Methode

Methode

Hier klicken zum Ausklappen

Das kleinste gemeinsame Vielfache (kgV) zweier Zahlen ist die kleinste Zahl, die sowohl ein Vielfaches der einen Zahl als auch ein Vielfaches der anderen Zahl ist.

Beispiel: Das kgV der Zahlen $4$ und $22$ ist $44$, weil

$4 \cdot  11 = 44$ und

$22 \cdot 2 = 44$.   

$44$ ist ein Vielfaches von $4$ und $22$.

Im Beispiel sind die Wurzelexponenten $2$ und $3$. Das kgV der Wurzelexponenten ist also $6$.

kgV($2, 3$) $= \textcolor{red}{6}$

Im zweiten Schritt multiplizierst du nun den Wurzelexponenten mit der Zahl, mit der er $\textcolor{red}{6}$ ergibt. Um den mathematischen Ausdruck nicht zu verändern, musst du außerdem den Exponenten der Zahl unterhalb der Wurzel mit dieser Zahl multiplizieren. In unserem Beispiel ist der Exponent der Zahl unterhalb der Wurzel beide Male $1$.

$\sqrt[2]{24} \rightarrow \sqrt[2  \cdot \textcolor{red}{3}]{24^{1 \cdot \textcolor{red}{3}}} = \sqrt[\textcolor{red}{6}]{24^3} = \sqrt[\textcolor{red}{6}]{13.824}$

$\sqrt[3]{56} \rightarrow \sqrt[3 \cdot \textcolor{red}{2}]{56^{1 \cdot \textcolor{red}{2}}} = \sqrt[\textcolor{red}{6}]{56^2} = \sqrt[\textcolor{red}{6}]{3.136}$

Durch die Erweiterung des Wurzelexponenten erhalten wir zwei gleichnamige Wurzeln, die gut miteinander verrechnet werden können.

Merke

Merke

Hier klicken zum Ausklappen

Wurzeln gleichnamig machen:

1. Kleinstes gemeinsames Vielfaches (kgV) der Wurzelexponenten bestimmen.

2. Wurzelexponenten auf kleinstes gemeinsames Vielfaches erweitern:

$\sqrt[n]{a^b} \rightarrow \sqrt[n \cdot \textcolor{red}{m}]{a^{b \cdot \textcolor{red}{m}}}$

Teste dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie erweitert man den Wurzelexponenten?

Teste dein Wissen!

Welche Wurzeln sind ungleichnamig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Wurzeln sind gleichnamig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussage ist richtig?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Melanie F., vom 2019-11-26
Sichtbare Erfolge in kurzen Zeit.
Sebastian G. S., vom 2019-11-21
Sehr netter Kontaktaufnahme. Professionelle Erklärung der Abläufe und kompetente Lehrer, die die Lerndefizite des Schülers sofort erkennen und der Lernstoff weitergeben können. Die Noten haben sich innerhalb 4 Wochen verbessert. Wir können sie nur weiter empfehlen
anonymisiert, vom 2019-11-17
Bin zufrieden.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7984