Wurzeln gleichnamig machen: Wurzelexponent erweitern

Mathematik > Zahlenlehre und Rechengesetze
Wurzeln gleichnamig machen: Wurzelexponent erweitern! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Wurzeln können anhand ihres Wurzelexponenten miteinander verglichen werden und in gleichnamige und ungleichnamige Wurzeln unterteilt werden. Für viele Rechnungen, wie etwa das Multiplizieren oder Dividieren von Wurzeln, benötigt man gleichnamige Wurzeln. Es ist daher wichtig, dass du weißt, wie man ungleichnamige Wurzeln in gleichnamige Wurzeln umformt. Dies macht man, indem man den Wurzelexponenten erweitert. Doch schauen wir uns zunächst an, was überhaupt gleichnamige und ungleichnamige Wurzeln sind.

Gleichnamige und ungleichnamige Wurzeln

Ob Wurzeln gleichnamig oder ungleichnamig sind, hängt vom Wurzelexponenten ab, das heißt von der Zahl, die auf der Wurzel steht. So gelten zwei Wurzeln als gleichnamig, wenn sie denselben Wurzelexponenten besitzen und als ungleichnamig, wenn sie unterschiedliche Wurzelexponenten besitzen.

Merke

Wurzeln sind gleichnamig, wenn sie denselben Wurzelexponenten besitzen:

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{n}]{b}$

Wurzeln sind ungleichnamig, wenn sie unterschiedliche Wurzelexponenten besitzen:

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{m}]{b}$

Das heißt natürlich auch, dass du immer zwei Wurzeln benötigst, um die Begriffe gleichnamig und ungleichnamig anwenden zu können, da du immer zwei Wurzelexponenten miteinander vergleichst. Der Wert unterhalb der Wurzel, den man auch Radikand nennt, spielt dabei keine Rolle. Die Radikanden der beiden Wurzeln können also gleich oder auch ungleich sein.

Beispiel

Ungleichnamige Wurzeln

$\sqrt{24}$ und $\sqrt[3]{56}$

$\sqrt[3]{90}$ und $\sqrt[5]{90}$

Gleichnamige Wurzeln

$\sqrt{54}$ und $\sqrt{9}$

$\sqrt[4]{543}$ und $\sqrt[4]{670}$

$\sqrt[3]{27}$ und $\sqrt[3]{27}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen


Den Wurzelexponenten erweitern: aus ungleichnamig wird gleichnamig

Ungleichnamige Wurzeln stellen dich häufig vor ein Problem, so kannst du beispielsweise nur gleichnamige Wurzeln multiplizieren oder dividieren. Umso wichtiger ist es, dass du weißt, wie man aus ungleichnamigen Wurzeln gleichnamige Wurzeln macht. Die Methode, die du dafür anwenden musst, nennt sich Erweiterung des Wurzelexponenten.

Betrachten wir folgendes Beispiel zweier ungleichnamiger Wurzeln:

$\sqrt[2]{24}$ und $\sqrt[3]{56}$

In einem ersten Schritt musst du das sogenannte kleinste gemeinsame Vielfache (kgV) der beiden Wurzelexponenten herausfinden.

Methode

Das kleinste gemeinsame Vielfache (kgV) zweier Zahlen ist die kleinste Zahl, die sowohl ein Vielfaches der einen Zahl als auch ein Vielfaches der anderen Zahl ist.

Beispiel: Das kgV der Zahlen $4$ und $22$ ist $44$, weil

$4 \cdot  11 = 44$ und

$22 \cdot 2 = 44$.   

$44$ ist ein Vielfaches von $4$ und $22$.

Im Beispiel sind die Wurzelexponenten $2$ und $3$. Das kgV der Wurzelexponenten ist also $6$.

kgV($2, 3$) $= \textcolor{red}{6}$

Im zweiten Schritt multiplizierst du nun den Wurzelexponenten mit der Zahl, mit der er $\textcolor{red}{6}$ ergibt. Um den mathematischen Ausdruck nicht zu verändern, musst du außerdem den Exponenten der Zahl unterhalb der Wurzel mit dieser Zahl multiplizieren. In unserem Beispiel ist der Exponent der Zahl unterhalb der Wurzel beide Male $1$.

$\sqrt[2]{24} \rightarrow \sqrt[2  \cdot \textcolor{red}{3}]{24^{1 \cdot \textcolor{red}{3}}} = \sqrt[\textcolor{red}{6}]{24^3} = \sqrt[\textcolor{red}{6}]{13.824}$

$\sqrt[3]{56} \rightarrow \sqrt[3 \cdot \textcolor{red}{2}]{56^{1 \cdot \textcolor{red}{2}}} = \sqrt[\textcolor{red}{6}]{56^2} = \sqrt[\textcolor{red}{6}]{3.136}$

Durch die Erweiterung des Wurzelexponenten erhalten wir zwei gleichnamige Wurzeln, die gut miteinander verrechnet werden können.

Merke

Wurzeln gleichnamig machen:

1. Kleinstes gemeinsames Vielfaches (kgV) der Wurzelexponenten bestimmen.

2. Wurzelexponenten auf kleinstes gemeinsames Vielfaches erweitern:

$\sqrt[n]{a^b} \rightarrow \sqrt[n \cdot \textcolor{red}{m}]{a^{b \cdot \textcolor{red}{m}}}$

Teste dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie erweitert man den Wurzelexponenten?

Teste dein Wissen!

Welche Wurzeln sind ungleichnamig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Wurzeln sind gleichnamig?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussage ist richtig?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7984