Nullstellen berechnen mit Polynomdivision

Mathematik > Zahlenlehre und Rechengesetze
Nullstellen berechnen mit Polynomdivision! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

In diesem Kapitel werden wir klären, inwieweit die Polynomdivision zum Ausrechnen von Nullstellen als Alternative zur pq-Formel dienen kann und was bzw. wie das Ergebnis einer Polynomdivision zu bewerten ist.

Gut zu wissen

Warum Polynomdivision? Bei der Polynomdivision dividierst du ganze Polynome, also mehr als zwei durch Plus- oder Minuszeichen miteinander verbundene Glieder einer Funktion. Also zum Beispiel die Funktion $x^3-3x^2-6x+8$.

Nullstellenberechnung mit der Polynomdivision

Die Polynomdivision spielt in der Mathematik vor allem bei der Nullstellenberechnung von Funktionen eine große Rolle. Sie wird dort angewendet, wo die pq-Formel nicht angewendet werden kann. Damit eine Polynomdivision ohne Rest durchgeführt werden kann, benötigt man nur eine Nullstelle der Funktion und kann die Funktion so einen kleinen Schritt vereinfachen. Allerdings kann das Erraten einer passenden Nullstelle eine große Schwierigkeit sein. Hierfür benutzen wir einen kleinen Trick. Dieser kann jedoch nur unter folgenden Bedingungen funktionieren:

1. Die Funktion hat nur ganzzahlige Koeffizienten und die Funktion besitzt ganzzahlige Nullstellen.

2. Wenn diese Bedingungen erfüllt sind, dann ist eine der Nullstellen ein Teiler des absoluten Gliedes der Funktion.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Polynomdivision - Beispiel

Schauen wir uns einmal ein Beispiel an:

Beispiel

Gegeben ist die Funktion $x^3-3x^2-6x+8$

Bei dieser Funktion lässt sich nicht die pq-Formel anwenden, weil wir nicht nur einen $x^2$-Wert, sondern auch ein $x^3$-Wert haben. Somit müssen wir, wenn wir die Nullstellen ausrechnen wollen, die Polynomdivision verwenden.

Um nicht bei jeder Zahl prüfen zu müssen, ob diese eine Nullstelle der Funktion ist, betrachten wir die oben beschriebenen Bedingungen. Diese besagen, dass die Funktion nur ganzzahlige Koeffizienten besitzen darf. Wenn wir uns die Funktion anschauen, stellen wir fest, dass alle Zahlen, die in der Funktion auftreten, keine Nachkommastellen haben, somit zur Menge der ganzen Zahlen gehören. Diese Bedingung ist erfüllt.

Die zweite Bedingung ist, dass es überhaupt ganzzahlige Nullstellen gibt. Da wir noch keine Nullstellen haben, können wir die Bedingung nicht überprüfen. Wir gehen aber davon aus, dass sie wahr ist. Somit können wir mithilfe der Teiler des absoluten Gliedes eine Nullstelle herausfinden.

Das absolute Glied in einer Funktion ist immer der Zahlenwert, an dem kein x-Wert angegliedert ist, hier also die $8$.

Die Teiler von $8$ sind $1, 2$ und $4$, sowie die negativen Zahlen $-1, -2$ und $-4$.

Somit haben wir die möglichen ganzzahligen Nullstellen auf sechs mögliche Stellen reduziert. Bei diesen führen wir jetzt nach und nach die Polynomdivision durch, bis wir eine Lösung ohne Rest erhalten und somit eine Nullstelle der Funktion gefunden haben. Fangen wir für die Nullstellenbestimmung mit dem Teiler $+1$ an. In der Polynomdivision eingesetzt, wäre das folglich:

$(x^3-3x^2-6x+8):(x-1)$

Die Vorzeichen werden bei der Polynomdivision immer vertauscht. Aus dem Wert $+1$ wird $-1$ und umgekehrt.

Wenn wir die Polynomdivision durchführen erhalten wir:

$(x^3-3x^2-6x+8):(x-1)=x^2 - 2x - 8 $

-$(x^3-x^2)$

———————————

$\;\;\;\;\;\;-2x^2-6x$

$-\;\;\;\;\;\;(-2x^2+2x)$

———————————

$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-8x+8$

$ -\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(-8x+8)$

———————————

$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{0}$

Nach der Polynomdivision stellen wir fest, dass die Funktion an der x-Koordinate $1$ eine Nullstelle hat. Die Lösung der Polynomdivision kann jetzt mithilfe der pq-Formel weiter auf Nullstellen überprüft werden. Wir stellen dabei fest, dass die anderen beiden Nullstellen der Funktion an den Stellen $N_{2}(-2|0)$ und $N_{3}(4|0)$ liegen. Somit sind drei der sechs Teiler des absoluten Gliedes auch Nullstellen der Funktion. Dies muss jedoch nicht bei jeder Funktion der Fall sein.

Merke

Die Polynomdivision ist eine Methode zur Berechnung von Nullstellen einer Funktion.

Um die Polynomdivision durchführen zu können, benötigen wir eine Nullstelle der Funktion.

Wenn keine Nullstelle gegeben ist, muss eine erraten werden. 

Hat die Funktion nur ganzzahlige Koeffizienten und besitzt ganzzahlige Nullstellen, dann ist eine der Nullstellen ein Teiler des absoluten Gliedes der Funktion.

Das absolute Glied ist der Wert der Funktion, der keine Variable beinhaltet.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Wir wünschen dir viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Bilde schriftlich die Polynomdivision aus folgender Funktion: $(x^2+4x+4):(x+2)$

Teste dein Wissen!

Bilde schriftlich die Polynomdivision aus folgender Funktion: $(x^3+x^2+3x+3):(x+1)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Bilde schriftlich die Polynomdivision aus folgender Funktion: $(x^2+4x+3):(x+3)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtigen Aussagen.

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Jetzt gratis anmelden & testen

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
18.03.2025 , von Stephanie P.
Das man sehr flexibel und ohne großen Aufwand, zwischen den Fächern wechseln kann. Im Büro in Salzgitter sind alle Nachhilfelehrkräfte super und die Bürodame ist immer sehr freundlich und hilfsbereit. Einfach nur super und meine Tochter bekommt alles sehr gut und verständlich erklärt.
18.03.2025 , von Jasmin M.
Toller Ort um sein Wissen zu festigen und zu entwickeln. Die Standortleitung hat sehr viel Empathie.
15.03.2025 , von Bernd N.
Das Kind lernt mit Freude. Die Lehrer sind allesamt sehr nett und reagieren auf Proben in der Schule schnell und flexibel. Meine Tochter lernt daher gerne in der Nachhilfe.

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
8624