Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Logarithmen und Exponentialgleichungen Erstes Logarithmusgesetz: Logarithmus eines Produkts

Erstes Logarithmusgesetz: Logarithmus eines Produkts

In diesem Lerntext beschäftigen wir uns mit der Herleitung und der Anwendung des ersten Logarithmusgesetzes.

 

Merke

Merke

Hier klicken zum Ausklappen

1. Logarithmusgesetz:

Der Logarithmus eines Produkts entspricht der Summe der Logarithmen der beiden Faktoren.

$\log_{a}(x\cdot y) = \log_{a}(x) + \log_{a}(y)$

Beispiele für das erste Logarithmusgesetz

Beispiel

Beispiel

Hier klicken zum Ausklappen

(1) $\log_{2}(4\cdot 8) = \log_{2}(4) + \log_{2}(8) = 2 + 3 = 5$

(2) $\log_{3}(9\cdot 81) = \log_{3}(9) + \log_{3}(81) = 2 + 4 = 6$

(3) $\log_{5}(125) = \log_{5}(5\cdot 25) = \log_{5}(5) + \log_{5}(25) = 1 + 2 = 3$

Herleitung des ersten Logarithmusgesetzes

Betrachten wir folgendes Problem:

$\log_{a}(x\cdot y) = z $

Bei solchen Rechnungen ist meist x oder y eine unbekannte Zahl. Um diese herauszufinden musst du sie aus der Klammer des Logarithmus herausziehen. Wie das funktioniert, schauen wir uns jetzt an. Schreiben wir die einzelnen Logarithmen einmal getrennt voneinander auf, um uns ins Gedächtnis zu rufen, für was diese eigentlich stehen:

Methode

Methode

Hier klicken zum Ausklappen

Beide Logarithmen lassen sich unabhängig voneinander aufschreiben und ergeben jeweils ein anderes Ergebnis (m und n).

$\log_{a}(x) = m       a^m = x$

$\log_{a}(y) = n       a^n = y$

Für $x$ und $y$ kann ich also auch die Potenzen $a^m$ und $a^n$ einsetzen.

$\log_{a}(a^m\cdot a^n) = z $

Aus dem nicht zusammenfassbaren Produkt $x\cdot y$ haben wir ein Produkt aus zwei Potenzen mit gleicher Basis gemacht: $a^m\cdot a^n$. An dieser Stelle sollten deine mathematischen Alarmglocken klingeln, da ein Produkt zweier Potenzen gleicher Basis geradezu danach schreit, zusammengefasst zu werden. Wenn dir diese Möglichkeit nicht logisch erscheint, solltest du noch einmal unseren Lerntext zu den Potenzgesetzen lesen.

$\log_{a}(a^{m+n}) = z $

Dieser Logarithmus lässt sich wiederum in eine Potenz umwandeln: $\log_{a}(a^{m+n}) = z    a^z = a^{m+n}$

Aus der Gleichung ist ersichtlich, dass $z = m + n$ ist.

Bevor wir weiter machen, sollten wir nochmal unsere Gedanken (und Buchstaben) ordnen. Wir wissen aus der Problemstellung, dass $z = \log_{a}(x\cdot y) $ ist. Wir können $z$ aber auch durch $z = m + n$ beschreiben. Wissen wir was m und n ist? Glücklicherweise ja, wenn du in den oberen, grünen Kasten schaust, definieren sich m und n durch:

$m = \log_{a}(x)$ 

$n = \log_{a}(y)$

Wir haben also alles, was wir brauchen, um $z$ neu zu definieren. Setzen wir m und n in $z = m + n$ ein erhalten wir:

$z = \log_{a}(x) + \log_{a}(y)$

Damit sind wir schon am Ziel angelangt: Wir haben einen neuen Ausdruck für $z$ gefunden, bei dem $x$ und $y$ nicht im selben Logarithmus stehen. Wäre einer der Buchstaben bekannt, ließe sich die Gleichung lösen. Um das Gesetz zu formulieren, schreiben wir anstatt $z$ wieder die Ausgangsgleichung hin:

$\log_{a}(x\cdot y) = z = \log_{a}(x) + \log_{a}(y)$

Merke

Merke

Hier klicken zum Ausklappen

1. Logarithmusgesetz:

Der Logarithmus eines Produkts entspricht der Summe der Logarithmen der beiden Faktoren.

$\log_{a}(x\cdot y) = \log_{a}(x) + \log_{a}(y)$

Die Herleitung solcher Rechenregeln kommt dir zurecht sehr schwierig vor, gleichzeitig ist es aber doch gut, dass all diese komplizierten Schritte am Ende eine simple Formel ergeben.

Es gibt noch weitere Rechengesetze für Logarithmen eines Quotienten, einer Potenz oder einer Wurzel

Du kannst dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7929