Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Erstes Logarithmusgesetz: Logarithmus eines Produkts

Erstes Logarithmusgesetz - Logarithmus eines Produkts! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Lerntext beschäftigen wir uns mit der Herleitung und der Anwendung des ersten Logarithmusgesetzes.

 

Merke

1. Logarithmusgesetz:

Der Logarithmus eines Produkts entspricht der Summe der Logarithmen der beiden Faktoren.

$\log_{a}(x\cdot y) = \log_{a}(x) + \log_{a}(y)$

Beispiele für das erste Logarithmusgesetz

Beispiel

(1) $\log_{2}(4\cdot 8) = \log_{2}(4) + \log_{2}(8) = 2 + 3 = 5$

(2) $\log_{3}(9\cdot 81) = \log_{3}(9) + \log_{3}(81) = 2 + 4 = 6$

(3) $\log_{5}(125) = \log_{5}(5\cdot 25) = \log_{5}(5) + \log_{5}(25) = 1 + 2 = 3$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Herleitung des ersten Logarithmusgesetzes

Betrachten wir folgendes Problem:

$\log_{a}(x\cdot y) = z $

Bei solchen Rechnungen ist meist x oder y eine unbekannte Zahl. Um diese herauszufinden musst du sie aus der Klammer des Logarithmus herausziehen. Wie das funktioniert, schauen wir uns jetzt an. Schreiben wir die einzelnen Logarithmen einmal getrennt voneinander auf, um uns ins Gedächtnis zu rufen, für was diese eigentlich stehen:

Methode

Beide Logarithmen lassen sich unabhängig voneinander aufschreiben und ergeben jeweils ein anderes Ergebnis (m und n).

$\log_{a}(x) = m       a^m = x$

$\log_{a}(y) = n       a^n = y$

Für $x$ und $y$ kann ich also auch die Potenzen $a^m$ und $a^n$ einsetzen.

$\log_{a}(a^m\cdot a^n) = z $

Aus dem nicht zusammenfassbaren Produkt $x\cdot y$ haben wir ein Produkt aus zwei Potenzen mit gleicher Basis gemacht: $a^m\cdot a^n$. An dieser Stelle sollten deine mathematischen Alarmglocken klingeln, da ein Produkt zweier Potenzen gleicher Basis geradezu danach schreit, zusammengefasst zu werden. Wenn dir diese Möglichkeit nicht logisch erscheint, solltest du noch einmal unseren Lerntext zu den Potenzgesetzen lesen.

$\log_{a}(a^{m+n}) = z $

Dieser Logarithmus lässt sich wiederum in eine Potenz umwandeln: $\log_{a}(a^{m+n}) = z    a^z = a^{m+n}$

Aus der Gleichung ist ersichtlich, dass $z = m + n$ ist.

Bevor wir weiter machen, sollten wir nochmal unsere Gedanken (und Buchstaben) ordnen. Wir wissen aus der Problemstellung, dass $z = \log_{a}(x\cdot y) $ ist. Wir können $z$ aber auch durch $z = m + n$ beschreiben. Wissen wir was m und n ist? Glücklicherweise ja, wenn du in den oberen, grünen Kasten schaust, definieren sich m und n durch:

$m = \log_{a}(x)$ 

$n = \log_{a}(y)$

Wir haben also alles, was wir brauchen, um $z$ neu zu definieren. Setzen wir m und n in $z = m + n$ ein erhalten wir:

$z = \log_{a}(x) + \log_{a}(y)$

Damit sind wir schon am Ziel angelangt: Wir haben einen neuen Ausdruck für $z$ gefunden, bei dem $x$ und $y$ nicht im selben Logarithmus stehen. Wäre einer der Buchstaben bekannt, ließe sich die Gleichung lösen. Um das Gesetz zu formulieren, schreiben wir anstatt $z$ wieder die Ausgangsgleichung hin:

$\log_{a}(x\cdot y) = z = \log_{a}(x) + \log_{a}(y)$

Merke

1. Logarithmusgesetz:

Der Logarithmus eines Produkts entspricht der Summe der Logarithmen der beiden Faktoren.

$\log_{a}(x\cdot y) = \log_{a}(x) + \log_{a}(y)$

Die Herleitung solcher Rechenregeln kommt dir zurecht sehr schwierig vor, gleichzeitig ist es aber doch gut, dass all diese komplizierten Schritte am Ende eine simple Formel ergeben.

Es gibt noch weitere Rechengesetze für Logarithmen eines Quotienten, einer Potenz oder einer Wurzel

Du kannst dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie kann man diesen Logarithmus noch ausdrücken?
$log_{10}(4cdot 6)$

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Wie lässt sich diese Summe noch ausdrücken?

$\log_{7}(3) + \log_{7}(8)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie kann man diesen Logarithmus noch ausdrücken?
$\log_{5}(3\cdot 9)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wende das erste Logarithmusgesetz an, berechne das Ergebnis und markiere die richtige Antwort! (Runde auf eine Nachkommastelle.)

$\lg_{}(3\cdot 7)$ =

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

16.02.2024 , von Jivitha U.
Alles besser geworden
15.02.2024
Sehr zufrieden
14.02.2024 , von Anne L.
Es wird in kleinen Gruppen gelernt, sodass auf die einzelnen Schüler eingegangen werden kann. Die Nachhilfelehrer sind motiviert und mit Geduld dabei. Die Nachhilfe findet in angenehmer Atmosphäre statt. Innerhalb weniger Wochen konnte der Unterrichtsstoff aufgearbeitet werden und die nächsten Noten haben den Erfolg nochmal deutlich gezeigt. Ich würde die Studienkreis Nachhilfe jedem weiterempfehlen.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7929