Was ist ein Intervall?
Intervalle sind definierte Bereiche in der Mathematik, denen eine besondere Bedeutung zukommt. Mithilfe von Intervallen werden etwa Grafiken wie Box-Plot-Diagramme gezeichnet.
Intervalle
Der Begriff Intervall ist in der Mathematik ein anderes Wort für eine bestimmte Menge an Zahlen. Das Intervall hat jedoch im Unterschied zu Mengen nicht alle Elemente sichtbar aufgelistet, sondern nur einen Start- und einen Endwert. Das bedeutet auch, dass das Intervall durchgängig ist und somit jedes Element zwischen Start- und Endwert enthalten ist. Schauen wir uns das mal in einem Beispiel an:
Beispiel
Beispiel
Wir haben das Intervall $[2,5]$. In diesem Intervall sind alle Zahlen zwischen $2$ und $5$ enthalten. Also nicht nur die natürlichen Zahlen, sondern alle reellen Zahlen zwischen diesen beiden Werten, anders als bei Mengen.
Es gibt vier verschiedene Arten von Intervallen. Diese unterscheidet man anhand der Klammern, die um die Zahlen herum stehen.
Abgeschlossenes Intervall
Das abgeschlossene Intervall ist die einfachste und gängigste Art des Intervalls. Hierbei werden der Start- und der Endwert mitgezählt, sie sind also Teil des Intervalls. Man schreibt das Intervall immer mit eckigen Klammern, wie oben in der Beispielbox geschrieben. Beim abgeschlossenen Intervall werden die Klammern nach innen gerichtet.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Offenes Intervall
Das offene Intervall ist das Gegenteil des abgeschlossenen Intervalls. Es beinhaltet zwar alle Werte zwischen Start- und Endwert, jedoch sind diese beiden Werte nicht Teil des Intervalls. Man schreibt es mit runden Klammern, oder dreht die eckigen Klammern um.
$(2,5)$ oder $]2,5[$
Halboffenes Intervall
Das halboffene Intervall ist eine Mischung aus offenem und abgeschlossenem Intervall. Hierbei ist einer der beiden Werte in dem Intervall, der andere ist nicht enthalten. Ein halboffenes Intervall kann rechtsoffen oder linksoffen sein. Hierbei sagt der Name aus, auf welcher Seite der Wert nicht im Intervall ist.
linksoffenes Intervall: $]2,4]$
rechtsoffenes Intervall: $[5,8[$
Unbeschränktes Intervall
Zuletzt gibt es auch die unbeschränkten Intervalle. Diese können auch in den oben genannten Variationen auftauchen, sind aber zu einer Seite hin immer offen und auch unbeschränkt, gehen also bis ins Unendliche. Man schreibt:
$[3,\infty[$
Merke
Merke
Das abgeschlossene Intervall beinhaltet beide Grenzwerte im Intervall.
Das offene Intervall beinhaltet keinen der beiden Grenzwerte im Intervall.
Das halboffene Intervall beinhaltet einen der beiden Grenzwerte.
Das unbeschränkte Intervall hat zu einer Seite den Grenzwert $\infty$.
Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!
Hol dir Hilfe beim Studienkreis!
Selbst-Lernportal Online
Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!
- Online-Chat 14-20 Uhr
- 700 Lerntexte & Videos
- Über 250.000 Übungsaufgaben
Einzelnachhilfe Online
Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!
- Online-Nachhilfe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Nachhilfe in deiner Nähe
Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Nachhilfe in deiner Nähe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Unsere Kunden über den Studienkreis
Weitere Erklärungen & Übungen zum Thema


























































































