Mathematik > Zahlenlehre und Rechengesetze

Wurzeln multiplizieren und dividieren

Inhaltsverzeichnis:

Ähnlich wie Potenzen können auch Wurzeln multipliziert oder dividiert werden. Dazu musst du nur einige wenige Regeln beachten.

Beim Multiplizieren und Dividieren müssen wir zwei Typen von Wurzeln unterscheiden:

  • gleichnamige Wurzeln und
  • ungleichnamige Wurzeln.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Gleichnamige Wurzeln sind Wurzeln, deren Wurzelexponenten gleich sind.

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{n}]{b}$

Ungleichnamige Wurzeln sind Wurzeln, deren Wurzelexponenten nicht gleich sind.

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{m}]{b}$

Wenn du nur eine einzige Wurzel betrachtest, kannst du nicht sagen, ob sie gleichnamig oder ungleichnamig ist, weil du dafür immer eine zweite Wurzel benötigst. Die Radikanden spielen bei diesen Begriffen keine Rolle und können sowohl gleich als auch unterschiedlich sein.

Gleichnamige Wurzeln multiplizieren 

Das Multiplizieren gleichnamiger Wurzeln ist denkbar einfach. Du musst nur die Zahlen unterhalb der Wurzel miteinander multiplizieren und unter einer Wurzel zusammenfassen:

$\sqrt{\textcolor{blue}{50}} \cdot \sqrt{\textcolor{red}{2}} = \sqrt{\textcolor{blue}{50} \cdot \textcolor{red}{2}} = \sqrt{100}$

Wenn die Wurzeln Koeffizienten besitzen, musst du auch diese multiplizieren und vor die Wurzel schreiben.

$(\textcolor{blue}{3} \cdot \sqrt{\textcolor{blue}{50}}) \cdot (\textcolor{red}{5} \cdot \sqrt{\textcolor{red}{2}}) = \textcolor{blue}{3} \cdot \textcolor{red}{5} \cdot \sqrt{\textcolor{blue}{50} \cdot \textcolor{red}{2}} = 15 \cdot \sqrt{100}$

Merke

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden multipliziert, indem die Radikanden miteinander multipliziert werden und zusammen unter eine Wurzel geschrieben werden.

$\sqrt[n]{\textcolor{blue}{a}} \cdot \sqrt[n]{\textcolor{red}{b}} = \sqrt[n]{\textcolor{blue}{a} \cdot \textcolor{red}{b}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[3]{15} \cdot \sqrt[3]{9} = \sqrt[3]{15 \cdot 9} = \sqrt[3]{135}$

$\sqrt[5]{123} \cdot \sqrt[5]{12} = \sqrt[5]{123 \cdot 12} = \sqrt[5]{1476}$

$\sqrt{9} \cdot \sqrt{36} = \sqrt{9 \cdot 36} = \sqrt{324}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Ungleichnamige Wurzeln multiplizieren

Ungleichnamige Wurzeln können zunächst nicht multipliziert werden. Um sie multiplizieren zu können, müssen sie gleichnamig gemacht werden, das heißt, sie müssen denselben Wurzelexponenten haben.

$\sqrt[\textcolor{red}{3}]{20} \cdot  \sqrt[\textcolor{red}{5}]{32}~~~~~NICHT~MOEGLICH$

Um aus ungleichnamigen Wurzeln gleichnamige zu machen, müssen wir den Wurzelexponenten erweitern.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Du weißt nicht genau, wie man Wurzelexponenten erweitert? Für dieses Thema bieten wir einen eigenständigen Lerntext an. Wenn du noch Probleme mit dieser Methode hast, schaue dort nach!

$(\sqrt[\textcolor{red}{3}]{20}) \cdot  (\sqrt[\textcolor{red}{5}]{32}) \rightarrow (\sqrt[\textcolor{red}{3} \cdot 5]{20^5}) \cdot  (\sqrt[\textcolor{red}{5} \cdot 3]{32^3}) = (\sqrt[\textcolor{red}{15}]{20^5}) \cdot  (\sqrt[\textcolor{red}{15}]{32^3}) = \sqrt[\textcolor{red}{15}]{(20^5) \cdot (32^3)}$

Merke

Merke

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln werden multipliziert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Gleichnamige Wurzeln dividieren

Auch das Dividieren von gleichnamigen Wurzeln folgt einem einfachen Prinzip. Ähnlich wie bei der Multiplikation kannst du die beiden Radikanden durcheinander teilen und unter eine gemeinsame Wurzel schreiben.

$\frac{\sqrt{\textcolor{blue}{16}}}{\sqrt{\textcolor{red}{8}}} = \sqrt{\frac{\textcolor{blue}{16}}{\textcolor{red}{8}}} = \sqrt{2}$

Merke

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden dividiert, indem der Quotient aus den beiden Radikanden unter eine Wurzel geschrieben wird.

$\frac{\sqrt[n]{\textcolor{blue}{a}}}{\sqrt[n]{\textcolor{red}{b}}} = \sqrt[n]{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}$

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\frac{\sqrt[3]{15}}{\sqrt[3]{3}} = \sqrt[3]{\frac{15}{3}} = \sqrt[3]{5}$

$\frac{\sqrt{44}}{\sqrt{11}} = \sqrt{\frac{44}{11}} = \sqrt{4}$

$\frac{\sqrt[5]{256}}{\sqrt[5]{4}} = \sqrt[5]{\frac{256}{4}} = \sqrt[5]{64}$

Ungleichnamige Wurzeln dividieren

Ungleiche Wurzeln können zunächst nicht dividiert werden. Genau wie beim Multiplizieren kannst du aber auch hier den Wurzelexponenten erweitern:

$\frac{\sqrt[2]{20}}{\sqrt[3]{9}} \rightarrow \frac{\sqrt[2 \cdot 3]{20^3}}{\sqrt[3 \cdot 2]{9^2}} = \frac{\sqrt[6]{8000}}{\sqrt[6]{81}} = \sqrt[6]{\frac{8000}{81}}$

Merke

Merke

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln werden dividiert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welche Wurzeln sind gleichnamig?

Teste dein Wissen!

Welche Wurzeln lassen sich ohne Umformung direkt miteinander multiplizieren?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lässt sich dieser Wurzelterm umrechnen? 

$\frac{\sqrt{25}}{\sqrt{5}}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wurzeln, deren Wurzelexponenten nicht den gleichen Wert haben, bezeichnet man als ... Wurzeln. (Kreuze die richtige Antwort für die Lücke an.)

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Melanie F., vom 2019-11-26
Sichtbare Erfolge in kurzen Zeit.
Sebastian G. S., vom 2019-11-21
Sehr netter Kontaktaufnahme. Professionelle Erklärung der Abläufe und kompetente Lehrer, die die Lerndefizite des Schülers sofort erkennen und der Lernstoff weitergeben können. Die Noten haben sich innerhalb 4 Wochen verbessert. Wir können sie nur weiter empfehlen
anonymisiert, vom 2019-11-17
Bin zufrieden.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7987