Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Wie funktioniert das teilweise Wurzelziehen?

Wie funktioniert das teilweise Wurzelziehen? | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

 Es gibt viele Fälle, bei denen du durch das Wurzelziehen sehr unübersichtliche Zahlen mit vielen Nachkommastellen erhältst. Um auch solche Wurzeln ausrechnen bzw. vereinfachen zu können, wenden wir das teilweise Wurzelziehen an. Man nennt das teilweise Wurzelziehen auch partielles Radizieren.

Bevor wir uns die genaue Vorgehensweise des teilweisen Wurzelziehens anschauen, müssen wir zunächst verstehen wo die Unterschiede zwischen diesen einzelnen Typen von Wurzeln liegen:

  • Vollständig-ziehbare Wurzeln
  • Nicht-ziehbare Wurzeln
  • Teilweise-ziehbare Wurzeln

Vollständig-ziehbare Wurzeln

Vollständig-ziehbare Wurzeln ergeben eine glatte Zahl. Allgemein kann man sagen, dass Wurzeln vollständig ziehbar sind, wenn der Exponent unter der Wurzel ein Vielfaches des Wurzelexponenten ist.

$\sqrt[2]{256} = \sqrt[2]{4^4}$

Die Zahl unter der Wurzel lässt sich als Potenz mit dem Exponenten $4$ schreiben. Der Exponent ist also ein Vielfaches des Wurzelexponenten ($2$) und somit ist die Wurzel vollständig ziehbar.

Merke

Eine Wurzel ist vollständig ziehbar, wenn der Wert unterhalb der Wurzel als eine Potenz geschrieben werden kann, deren Exponent ein Vielfaches des Wurzelexponenten ist.

$\sqrt[2]{a^2}$ , $\sqrt[2]{a^6}$

$\sqrt[3]{a^3}$ , $\sqrt[3]{a^9}$

Beispiel

$\sqrt[2]{16} = \sqrt[2]{4^2} = 4$

$\sqrt[2]{36} = \sqrt[2]{6^2} = 6$

$\sqrt[3]{125} = \sqrt[3]{5^3} =  5$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Nicht-ziehbare Wurzeln

Eine Wurzel ist nicht ziehbar, wenn der Exponent der Potenz unter der Wurzel kein Vielfaches des Wurzelexponenten und kleiner als der Wurzelexponent ist.

$\sqrt[3]{16} = \sqrt[3]{4^2}$

Du siehst, dass der Wert des Exponenten weder größer als der Wurzelexponent noch ein Vielfaches des Wurzelexponenten ist. 

Merke

Eine Wurzel ist nicht-ziehbar, wenn der Exponent der Potenz unter der Wurzel kein Vielfaches des Wurzelexponenten und kleiner als der Wurzelexponent ist.

$\sqrt[2]{a}$ , $\sqrt[3]{a^2}$

Beispiel

Nicht-ziehbare Wurzeln

$\sqrt{29} \approx 5,38$

$\sqrt{23} \approx 4,79$

$\sqrt{67} \approx 8,18$

Teilweise-ziehbare Wurzeln

Teilweise-ziehbare Wurzeln sind ein, für uns entscheidender, Sonderfall. Sie zeichnen sich dadurch aus, dass der Exponent der Potenz unter der Wurzel zwar kein Vielfaches des Wurzelexponenten ist, aber größer als der Wurzelexponent ist.

Merke

Eine Wurzel ist teilweise-ziehbar, wenn der Exponent der Potenz unter der Wurzel größer als der Wurzelexponent ist, jedoch kein Vielfaches des Wurzelexponenten ist.

$\sqrt[2]{a^5}$ , $\sqrt[3]{a^8}$

Vorgehen beim teilweisen Wurzelziehen

Beim teilweisen Wurzelziehen zerlegst du die teilweise-ziehbare Wurzel in einen ziehbaren und einen nicht-ziehbaren Teil. Das bedeutet, dass du den Radikanden unter der Wurzel in ein Produkt aus zwei Zahlen zerlegst. Von einer dieser Zahlen musst du die Wurzel ziehen können.

$\sqrt{44} = \sqrt{4 \cdot 11}$

Methode

Faktoren unter der Wurzel

$\sqrt{a\cdot b} = \sqrt{a} \cdot \sqrt{b} $

$\sqrt{44} = \sqrt{4 \cdot 11} = \sqrt{4} \cdot \sqrt{11} = 2\cdot \sqrt{11}$

Wie du siehst, haben wir die teilweise-ziehbare Wurzel in ein Produkt aus einer ganzen Zahl und einer nicht-ziehbaren Wurzel umgeformt.

Beispiel

Teilweises Wurzelziehen

$\sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3 \cdot \sqrt{5}$

$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2 \cdot \sqrt{2}$

$\sqrt[5]{128} = \sqrt[5]{2^5 \cdot 2^2} = \sqrt[5]{2^5} \cdot \sqrt[5]{2^2} = 2 \cdot \sqrt[5]{4}$

Teste dein neu erlerntes Wissen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welche Wurzel ist eine nicht-ziehbare Wurzel?

Teste dein Wissen!

Wie lässt sich diese Wurzel durch teilweises Wurzelziehen vereinfachen?

$\sqrt{49 \cdot 9 \cdot 5}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wann ist eine Wurzel vollständig ziehbar?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Kreuze die richtige Antwort an.

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

10.04.2024 , von Claudia S.
Es wurde alles möglich gemacht, was wir wollten. Alles ist gut organisiert und der Einzelunterricht individuell und äußerst hilfreich.
10.04.2024 , von Frank K.
Wir haben großartige Erfahrungen gemacht. Unser Sohn ist sehr zufrieden. Wir können es jeden empfehlen.👍👍
10.04.2024 , von Stephanie R.
Einfache Anmeldung; kompetente Betreuung.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7982