Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Logarithmen und Exponentialgleichungen Was ist ein Logarithmus?

Was ist ein Logarithmus?

Der Logarithmus hängt sehr stark mit dem mathematischen Begriff der Potenz zusammen. Doch wofür steht er?

Definition eines Logarithmus

Ein Logarithmus schreibt sich wie folgt:

Logarithmus
Logarithmus

Wenn du diesen Term vorliest, hört sich das so an: Der Logarithmus von b zur Basis a ist gleich n.

Um zu verstehen, was der Logarithmus genau ausdrückt, schauen wir uns zunächst noch einmal die Potenz an:

$a^n = x$

Das sollte dir bekannt vorkommen: Die Basis a wird n-mal mit sich selbst multipliziert. Das Ziel der Berechnung einer Potenz ist dabei das Ergebnis, das sozusagen die unbekannte Komponente der Gleichung ist. Man nennt diesen Wert auch den Potenzwert.

$2^3 = x$

Merke

Merke

Hier klicken zum Ausklappen

Bei einer Potenz fragt man nach dem Ergebnis bzw. dem Potenzwert.

Wenn du eine Potenz betrachtest, fragst du also: Was ergibt $a$ hoch $n$?

Was würdest du machen, wenn das Ergebnis und der Exponent bekannt sind und du herausfinden sollst, welchen Wert die Basis hat?

$a^3 = 8$

Tatsächlich kennst du für dieses Problem bereits eine Lösung: die Wurzel.

$\sqrt[3]{8} = a$

Merke

Merke

Hier klicken zum Ausklappen

Bei der Wurzel fragt man nach der Basis.

Du weißt nun schon, wie man nach dem Ergebnis und der Basis fragt und ahnst wahrscheinlich schon, was jetzt kommt. Schauen wir uns folgendes Problem an:

$2^n = 8$

Hier ist der Exponent unbekannt. Die Rechnung muss so umgestellt werden, dass wir den Exponenten berechnen können: $ [...] =n$

Mit deinen jetzigen mathematischen Kenntnissen könntest du dieses Problem nicht lösen. Dank dem Logarithmus werden solche Gleichungen in Zukunft aber kein Problem mehr sein.

Der Zusammenhang zwischen einer Potenz und dem Logarithmus lässt sich also wie folgt darstellen:

Logarithmus
Logarithmus

Wenn du diesen Term vorliest, hört sich das so an: Der Logarithmus von b zur Basis a ist gleich n.

Merke

Merke

Hier klicken zum Ausklappen

Der Logarithmus gibt uns die Möglichkeit, eine Potenz nach dem Exponenten umzustellen:

$a^n = b    \log_{a}(b) = n$

Beispiele für Logarithmen

Beispiel

Beispiel

Hier klicken zum Ausklappen

(1) $4^3 = 64    \log_{4}(64) = 3$

(2) $3^5 = 243    \log_{3}(243) = 5$

(3) $5^{-3} = 0,008    \log_{5}(0,008) = -3$

Ihr findet auf eurem Taschenrechner eine eigene log-Taste, mit der ihr den Logarithmus problemlos berechnen könnt.

Methode

Methode

Hier klicken zum Ausklappen

Achtung Verwechslungsgefahr!

Die Tasten log und lg haben unterschiedliche Bedeutungen. Lg beschreibt den sogenannten dekadischen Logarithmus $\log_{10}(x) = n$, bei dem die Basis immer als 10 definiert ist.

Um mit Logarithmen rechnen zu können, musst du bestimmte Rechenregeln einhalten, die du auf unserer Übersichtsseite zu den Logarithmusgesetzen findest. 

Du kannst dein neu erlerntes Wissen nun noch mit unseren Übungsaufgaben testen. Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7932