Online Lernen | Mathematik Aufgaben | Zahlenlehre und Rechengesetze Wurzelrechnung Was sind Quadrat- und Kubikwurzeln?

Was sind Quadrat- und Kubikwurzeln?

In diesem Artikel befassen wir uns mit der Frage, was eigentlich eine Quadrat- oder Kubikwurzel ist.

Das Wurzelziehen ist das Gegenteil des Potenzierens. Anstatt Wurzelziehen sagt man auch radizieren. Das mathematische Symbol für das Wurzelziehen ist das Wurzelzeichen: $\sqrt{\textcolor{white}{...}}$

$Potenzieren~~~~~~~~~~~~~~~~~~~~Radizieren$

$\textcolor{red}{8}^\textcolor{blue}{2} = \textcolor{green}{64}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sqrt[\textcolor{blue}{2}]{\textcolor{green}{64}} = \textcolor{red}{8}$

gesprochen: Die zweite Wurzel aus vierundsechzig ist acht.

Merke

Merke

Hier klicken zum Ausklappen

Eine Wurzel ist gegeben durch:

$\textcolor{red}{a}^\textcolor{blue}{n} = \textcolor{green}{x} \Leftrightarrow \sqrt[\textcolor{blue}{n}]{\textcolor{green}{x}} = \textcolor{red}{a}$

Dabei bezeichnet man $\textcolor{green}{x}$ als den Radikanden und $\textcolor{blue}{n}$ als den Wurzelexponenten.

Quadratwurzel

Wurzeln, deren Wurzelexponent $2$ ist, bezeichnet man auch als Quadratwurzeln. In der Regel lässt man den Wurzelexponenten $2$ jedoch weg, weil die Quadratwurzel, die am häufigsten vorkommende Wurzel ist. Alle Wurzelexponenten, die größer als $2$ sind, müssen immer dazugeschrieben werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[2]{49} = 7  \Leftrightarrow   \sqrt{49} = 7$

$\sqrt[2]{9} = 3  \Leftrightarrow   \sqrt{9} = 3$

$\sqrt[2]{16} = 4  \Leftrightarrow   \sqrt{16} = 4$

Die Quadratwurzel aus einer Zahl ist also diejenige Zahl, die zum Quadrat genommen die Zahl unter der Wurzel ergibt. Eine allgemeine Form der Quadratwurzel würde also so aussehen:

Wenn $x \cdot x = y$, dann gilt: $\sqrt{y} = x$

Da das Ziehen der Quadratwurzel in vielen Fällen krumme Zahlen ergibt, berechnest du sie meistens mit Hilfe des Taschenrechners. In diesen Fällen musst du die Zahlen runden:

  • $\sqrt{2} \approx 1,4142$
  • $\sqrt{10} \approx 3,1623$

Merke

Merke

Hier klicken zum Ausklappen

Die Quadratwurzel ist beschrieben durch:

$\textcolor{red}{x}^\textcolor{blue}{2} = \textcolor{green}{y} \Leftrightarrow \sqrt{\textcolor{green}{y}} = \textcolor{red}{x}$

Die Quadratwurzel lässt sich auch aus Brüchen ziehen, indem die Wurzel einzeln von Zähler und Nenner gezogen wird.

  • $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$
  • $\sqrt{\frac{16}{4}} = \frac{\sqrt{16}}{\sqrt{4}} = \frac{4}{2} = 2$

Aufgrund des Zusammenhangs von Quadratwurzel und dem Quadrieren (mit Zwei hoch nehmen), kannst du keine Quadratwurzel aus einer negativen Zahl ziehen.

$x^2 = y \sqrt{y} = x$

$x^2$ kann nie eine negative Zahl ergeben:

$(-2)^2 = 4$

$2^2 = 4$

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Es ist mathematisch nicht möglich Quadratwurzeln aus negativen Zahlen zu ziehen!

Kubikwurzel

Die Kubikwurzel unterscheidet sich von der Quadratwurzel durch den Wurzelexponenten.

$Potenzieren~~~~~~~~~~~~~~~~~~~~Radizieren$

$\textcolor{red}{3}^\textcolor{blue}{3} = \textcolor{green}{27}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sqrt[\textcolor{blue}{3}]{\textcolor{green}{27}} = \textcolor{red}{3}$

Anstatt die Zahl hoch zwei zu nehmen, fragt die Kubikwurzel nach Zahlen, die hoch drei genommen wurden. Ein weiterer Unterschied zur Quadratwurzel ist, dass du die $\textcolor{blue}{3}$ immer mit an die Wurzel schreiben musst und nicht einfach weglassen darfst.

Beispiel

Beispiel

Hier klicken zum Ausklappen

$4^3 = 64 \rightarrow \sqrt[3]{64} = 4$

$9^3 = 729 \rightarrow \sqrt[3]{729} = 9$

$1^3 = 1 \rightarrow \sqrt[3]{1} = 1$

Merke

Merke

Hier klicken zum Ausklappen

Die Kubikwurzel ist beschrieben durch:

$\textcolor{red}{a}^\textcolor{blue}{3} = \textcolor{green}{x} \Leftrightarrow \sqrt[\textcolor{blue}{3}]{\textcolor{green}{x}} = \textcolor{red}{a}$

Im Gegensatz zur Quadratwurzel lässt sich die Kubikwurzel auch aus negativen Zahlen ziehen:

$(-3)^3 = - 27$

$\sqrt[3]{-27} = -3$

Wurzeln als Potenzen schreiben

Wurzeln und Potenzen hängen sehr stark zusammen. Zum einen drückt eine Wurzel praktisch eine umgekehrte Potenz aus. Zum anderen lassen sich Wurzeln auch als Potenzen schreiben:

$\sqrt[3]{64} = 64^{\frac{1}{3}}= 4$

$\sqrt[2]{81} = 81^{\frac{1}{2}}= 9$

Merke

Merke

Hier klicken zum Ausklappen

Wurzeln lassen sich als Potenzen schreiben, indem man den Radikanden als Basis und den Kehrwert des Wurzelexponenten als Exponenten nimmt:

$\sqrt[\textcolor{blue}{n}]{\textcolor{green}{x}} = \textcolor{green}{x}^{\frac{1}{\textcolor{blue}{n}}}$

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Du brauchst Hilfe? Frag einen Lehrer!

Lehrer jetzt sofort fragen

Wende dich direkt online ohne Termin per Video-Chat an einen unserer Lehrer der Mathematik-Hausaufgabenhilfe, täglich zwischen 14-21 Uhr.

Jetzt kostenlos fragen

Lehrer zum Wunschtermin fragen

Vereinbare einen Termin bei einem Lehrer der Mathematik-Nachhilfe-Online

Gratis Probestunde online

Du möchtest lieber einen Lehrer in einer unserer Nachhilfe-Schulen fragen? Dann wähle hier deine nächstgelegene Mathematik-Nachhilfe-Schule aus.

Gratis Probestunde vor Ort
TESTE KOSTENLOS UNSER SELBST-LERN-PORTAL:
  • Über 600 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Gratis Nachhilfe-Probestunde
  • Sofort-Hilfe: Lehrer online fragen
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7981