Mathematik > Zahlenlehre und Rechengesetze

Was sind Quadrat- und Kubikwurzeln?

Was sind Quadrat- und Kubikwurzeln? | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Artikel befassen wir uns mit der Frage, was eigentlich eine Quadrat- oder Kubikwurzel ist.

Das Wurzelziehen ist das Gegenteil des Potenzierens. Anstatt Wurzelziehen sagt man auch radizieren. Das mathematische Symbol für das Wurzelziehen ist das Wurzelzeichen: $\sqrt{\textcolor{white}{...}}$

$Potenzieren~~~~~~~~~~~~~~~~~~~~Radizieren$

$\textcolor{red}{8}^\textcolor{blue}{2} = \textcolor{green}{64}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sqrt[\textcolor{blue}{2}]{\textcolor{green}{64}} = \textcolor{red}{8}$

gesprochen: Die zweite Wurzel aus vierundsechzig ist acht.

Merke

Eine Wurzel ist gegeben durch:

$\textcolor{red}{a}^\textcolor{blue}{n} = \textcolor{green}{x} \Leftrightarrow \sqrt[\textcolor{blue}{n}]{\textcolor{green}{x}} = \textcolor{red}{a}$

Dabei bezeichnet man $\textcolor{green}{x}$ als den Radikanden und $\textcolor{blue}{n}$ als den Wurzelexponenten.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Quadratwurzel

Wurzeln, deren Wurzelexponent $2$ ist, bezeichnet man auch als Quadratwurzeln. In der Regel lässt man den Wurzelexponenten $2$ jedoch weg, weil die Quadratwurzel, die am häufigsten vorkommende Wurzel ist. Alle Wurzelexponenten, die größer als $2$ sind, müssen immer dazugeschrieben werden.

Beispiel

$\sqrt[2]{49} = 7  \Leftrightarrow   \sqrt{49} = 7$

$\sqrt[2]{9} = 3  \Leftrightarrow   \sqrt{9} = 3$

$\sqrt[2]{16} = 4  \Leftrightarrow   \sqrt{16} = 4$

Die Quadratwurzel aus einer Zahl ist also diejenige Zahl, die zum Quadrat genommen die Zahl unter der Wurzel ergibt. Eine allgemeine Form der Quadratwurzel würde also so aussehen:

Wenn $x \cdot x = y$, dann gilt: $\sqrt{y} = x$

Da das Ziehen der Quadratwurzel in vielen Fällen krumme Zahlen ergibt, berechnest du sie meistens mit Hilfe des Taschenrechners. In diesen Fällen musst du die Zahlen runden:

  • $\sqrt{2} \approx 1,4142$
  • $\sqrt{10} \approx 3,1623$

Merke

Die Quadratwurzel ist beschrieben durch:

$\textcolor{red}{x}^\textcolor{blue}{2} = \textcolor{green}{y} \Leftrightarrow \sqrt{\textcolor{green}{y}} = \textcolor{red}{x}$

Die Quadratwurzel lässt sich auch aus Brüchen ziehen, indem die Wurzel einzeln von Zähler und Nenner gezogen wird.

  • $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$
  • $\sqrt{\frac{16}{4}} = \frac{\sqrt{16}}{\sqrt{4}} = \frac{4}{2} = 2$

Aufgrund des Zusammenhangs von Quadratwurzel und dem Quadrieren (mit Zwei hoch nehmen), kannst du keine Quadratwurzel aus einer negativen Zahl ziehen.

$x^2 = y \sqrt{y} = x$

$x^2$ kann nie eine negative Zahl ergeben:

$(-2)^2 = 4$

$2^2 = 4$

Gut zu wissen

Es ist mathematisch nicht möglich Quadratwurzeln aus negativen Zahlen zu ziehen!

Kubikwurzel

Die Kubikwurzel unterscheidet sich von der Quadratwurzel durch den Wurzelexponenten.

$Potenzieren~~~~~~~~~~~~~~~~~~~~Radizieren$

$\textcolor{red}{3}^\textcolor{blue}{3} = \textcolor{green}{27}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\sqrt[\textcolor{blue}{3}]{\textcolor{green}{27}} = \textcolor{red}{3}$

Anstatt die Zahl hoch zwei zu nehmen, fragt die Kubikwurzel nach Zahlen, die hoch drei genommen wurden. Ein weiterer Unterschied zur Quadratwurzel ist, dass du die $\textcolor{blue}{3}$ immer mit an die Wurzel schreiben musst und nicht einfach weglassen darfst.

Beispiel

$4^3 = 64 \rightarrow \sqrt[3]{64} = 4$

$9^3 = 729 \rightarrow \sqrt[3]{729} = 9$

$1^3 = 1 \rightarrow \sqrt[3]{1} = 1$

Merke

Die Kubikwurzel ist beschrieben durch:

$\textcolor{red}{a}^\textcolor{blue}{3} = \textcolor{green}{x} \Leftrightarrow \sqrt[\textcolor{blue}{3}]{\textcolor{green}{x}} = \textcolor{red}{a}$

Im Gegensatz zur Quadratwurzel lässt sich die Kubikwurzel auch aus negativen Zahlen ziehen:

$(-3)^3 = - 27$

$\sqrt[3]{-27} = -3$

Wurzeln als Potenzen schreiben

Wurzeln und Potenzen hängen sehr stark zusammen. Zum einen drückt eine Wurzel praktisch eine umgekehrte Potenz aus. Zum anderen lassen sich Wurzeln auch als Potenzen schreiben:

$\sqrt[3]{64} = 64^{\frac{1}{3}}= 4$

$\sqrt[2]{81} = 81^{\frac{1}{2}}= 9$

Merke

Wurzeln lassen sich als Potenzen schreiben, indem man den Radikanden als Basis und den Kehrwert des Wurzelexponenten als Exponenten nimmt:

$\sqrt[\textcolor{blue}{n}]{\textcolor{green}{x}} = \textcolor{green}{x}^{\frac{1}{\textcolor{blue}{n}}}$

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Welche dieser Möglichkeiten ist die richtige Schreibweise für eine Wurzel als Potenz?

Teste dein Wissen!

Welche Wurzel ist mathematisch nicht lösbar?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Rechne die folgenden Wurzeln aus und markiere die richtige Lösung: a) $\sqrt[3]{729} =$
b) $\sqrt[3]{8} =$
c) $\sqrt[3]{125} =$
d) $\sqrt[3]{216} =$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Rechne die folgenden Wurzeln aus und markiere die richtige Lösung: a) $\sqrt{49} =$
b) $\sqrt{16} =$
c) $\sqrt{144} =$
d) $\sqrt{36} =$

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

11.09.2023 , von Swetlana P.
Frau Becker geht auf Kunden ein. Sie ist sehr freundlich, die Lehrer sind professionell, nicht teuer.
11.09.2023 , von Eva B.
Sie haben mit viel Geduld ihn geholfen….
11.09.2023 , von Marioara N.
Note 1 wie in der Schule!
Mathematik > Zahlenlehre und Rechengesetze

Weitere Erklärungen & Übungen zum Thema

Potenzen addieren - so funktioniert's
Allgemeine Betrachtung einer Potenz
Potenzen - Definition und Beispiele
Potenzen mit negativem Exponenten
Potenzen multiplizieren, dividieren, potenzieren - gleiche Basis
Potenzen multiplizieren, dividieren - gleicher Exponent
Potenzen subtrahieren - so funktioniert's
L?ngeneinheiten
Zehnerpotenzen, Einheiten und wissenschaftliche Schreibweise
Übersicht zu allen Potenzgesetzen
Brüche addieren und subtrahieren - So geht's
So werden Brüche dividiert: Regeln und Erklärung
Einhalb und zwei Viertel.
Brüche kürzen und erweitern - so geht's richtig!
Brüche multiplizieren: Erklärung und Übungen
Was ist ein Bruch? - Definition und Beispiele
Bruchrechnung: verschiedene Brucharten
Wie viel Prozent der K?stchen sind gef?rbt?
Brüche umwandeln in Prozente - so geht's richtig!
Brüche vergleichen und ordnen
Logarithmus mit der Basis a und dem Numerus b.
Dekadischer, binärer und natürlicher Logarithmus
Drittes Logarithmusgesetz: Logarithmus einer Potenz
Erstes Logarithmusgesetz: Logarithmus eines Produkts
Wie löse ich Exponentialgleichungen?
Logarithmus mit der Basis a und dem Numerus b.
Kehrwertsätze des Logarithmus
Logarithmus
Was ist ein Logarithmus?
Was ist der Logarithmus?
Logarithmusgleichungen lösen einfach erklärt
Viertes Logarithmusgesetz: Logarithmus einer Wurzel
Zweites Logarithmusgesetz: Logarithmus eines Quotienten
Logarithmusgesetze - Übersicht und Beispiele
Wie funktioniert das Heron-Verfahren?
Was sind Quadrat- und Kubikwurzeln?
Wie funktioniert das teilweise Wurzelziehen?
Wie funktioniert das teilweise Wurzelziehen?
Wurzelrechnung: Übersicht über die Rechengesetze
Wurzeln gleichnamig machen: Wurzelexponent erweitern
Wurzelgleichungen lösen - Beispiele und Übungen
Wurzeln addieren und subtrahieren
Wurzeln multiplizieren und dividieren
Wurzeln potenzieren und radizieren
Wie bestimme ich eine Definitionsmenge?
Mengen und Elemente in der Mathematik
Leere Menge, Teilmenge, Schnittmenge und Vereinigungsmenge
Überblick: Zahlenmengen einfach erklärt
ganze Zahlen
Zahlenmengen: natürliche und ganze Zahlen
Primzahlen: Besondere Zahlen
Zahlenmengen im Vergleich
Zahlenmengen: rationale, irrationale und reelle Zahlen
Was ist ein Intervall?
Zahlenstrahl
Zahlenstrahl, Zahlengerade, Betragsfunktion einfach erklärt
Polynomdivision - so funktioniert's
Polynomdivision - so funktioniert's
Was bedeutet der Rest bei Polynomdivisionen?
Nullstellen berechnen mit Polynomdivision
Proportionale und antiproportionale Zuordnungen
Verhältnisse berechnen einfach erklärt
Zusammengesetzter Dreisatz - Doppelter Dreisatz
Dreisatz - Aufgaben, Erklärung und Berechnung
Die vier Regeln zur Multiplikation rationaler Zahlen
Multiplizieren und Dividieren rationaler Zahlen - so funktioniert's
Was sind rationale Zahlen? Eine einfache Erklärung
Regeln zur Addition rationaler Zahlen
Rechnen mit rationalen Zahlen
Vedische Mathematik - Multiplikation Rechentricks
Kopfrechnen: zweistellige Zahlen multiplizieren
Grundrechenart: so funktioniert die Addition
schriftliche Division Beispiel: 112 : 4
Grundrechenart: so funktioniert die Division
schriftliche Multiplikation
Multiplizieren - Grundrechenart in der Mathematik
Subtraktionsstrahl
Schriftliches Subtrahieren - so geht's richtig!
das kleine Ein-Mal-Eins
Das kleine und das große Einmaleins - Tabelle und Übungen
Schriftliche Multiplikation von 24 mal 2
Schriftliche Multiplikation - Aufgaben und Einführung
Erster Schritt der Beispieldivision
Schriftlich Dividieren mit Komma
Assoziativgesetz - Übungen & Aufgaben
So funktioniert die Punkt- vor Strichrechnung
Distributivgesetz - Übungen, Erklärung & Aufgaben
Kommutativgesetz - Übungen & Aufgaben
Was ist ein Term in der Mathematik?
Termumformungen und Klammern - Übungen
R?mische Zahlensymbole
Römische Zahlen und Ziffern richtig lesen und umrechnen
Zahlenstrahl von 1 bis 10
Zahlen der Größe nach ordnen und vergleichen
Zahlen runden - Mit diesen Regeln geht's richtig
Drei verschiedene Dreiecke
Maßstab umrechnen und berechnen - so geht's richtig!
Bin?rsystem
Zweiersystem/Dualsystem leicht erklärt
Wie berechnet man den größten gemeinsamen Teiler (ggT)?
Division von 472 durch 8
Teilbarkeitsregeln: Endziffernregel
Teilbarkeitsregeln: Quersummenregel
Summen- und Differenzenregel - Teilbarkeit
Kleinstes gemeinsames Vielfaches (kgV) berechnen
Zerlegungstabelle der zahl 60
Primfaktorzerlegung: Primfaktoren berechnen
Teiler und Vielfache einer Zahl
uhr
Zeiteinheiten umrechnen - Tabelle und Übungen
umwandlung_flaeche
Fläche und Volumen - Einheiten umrechnen
umwandlung_von_t_in_mg
Gewichtseinheiten umrechnen - Tabelle
umwandlung_meter
Längeneinheiten umrechnen - Tabelle und Übungen
Grundwert, Prozentwert, Prozentsatz einfach erklärt
Prozentuale Veränderung, Prozentfaktor und -satz
Promille berechnen und in Prozent umrechnen
Zusammenhang zwischen Prozentangabe und Dezimalzahl.
Wie funktioniert die Prozentrechnung?
Zinseszins: Formel und Erklärung
Zinsrechnung: Formeln und Übungen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7981