Mathematik > Zahlenlehre und Rechengesetze

Leere Menge, Teilmenge, Schnittmenge und Vereinigungsmenge

Inhaltsverzeichnis:

In diesem Text behandeln wir die verschiedenen Arten und Beziehungen der Mengen zueinander. Beispiele hierfür sind etwa die Schnittmenge, leere Menge oder Vereinigungsmenge.

Damit du dieses Kapitel komplett verstehst, solltest du dich schon mit dem Kapitel Mengen und Elemente auseinandergesetzt haben.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Grundlegende Beziehungen zwischen Mengen

Wir haben gelernt, wie die einzelnen Objekte in einer Menge heißen und dass eine gewisse Anzahl von ihnen eine Menge ausmachen. Ein Beispiel war die Menge der natürlichen Zahlen, geschrieben: $M = \{1,2,3,..., \infty \}$. Es gibt aber auch Mengen, die kleiner als die Menge der natürlichen Zahlen ist und sogar eine Menge, die gar keine Elemente beinhaltet.

Die leere Menge

Eine Menge, die kein einziges Element enthält, nennt man leere Menge. Da diese Menge keine Elemente enthält, hat sie die Mächtigkeit $0$. Man schreibt für die leere Menge zwei geschweifte Klammern ohne Inhalt.

Diese Mengen sind unter anderem bei Funktionen ohne Lösungen zu finden, wo das $x$ also nicht aufgelöst werden kann.

Merke

Merke

Hier klicken zum Ausklappen

Die leere Menge ist die Menge, die keine Elemente enthält. Ihre Mächtigkeit ist $0$.

$M = \{\}$.

Teilmenge/Obermenge

Die Teilmenge ist eine weitere Art der Mengen in der Mathematik. Sie bezeichnet den Zustand, wenn eine Menge komplett in einer anderen Menge liegt und somit eine Teilmenge der größeren Menge ist. Hier ein Beispiel:

Gegeben ist die Menge $M = \{1,2,3,4,5\}$

Diese Menge $M$ ist eine Teilmenge der Menge der natürlichen Zahlen. Geschrieben wird es:

$M \subseteq ℕ$. Die natürlichen Zahlen werden hierbei Obermenge genannt.

Merke

Merke

Hier klicken zum Ausklappen

Eine Menge heißt Teilmenge, wenn sie komplett Teil einer anderen Menge ist. Die größere Menge der beiden wird hierbei Obermenge genannt.

$A \subseteq B$

Schnittmenge

Die Schnittmenge oder auch Durchschnittsmenge bezeichnet die Menge von Elementen, die gleichzeitig in zwei Mengen enthalten sind, ohne dass die Mengen Teilmengen sind. Zeigen wir das Ganze an einem Beispiel:

Es sind die Mengen $M$ und $N$ gegeben. Die Menge $M$ enthält die Zahlen $\{1,2,\textcolor{green}{3,4,5}\}$, die Menge $N$ die Zahlen $\{\textcolor{green}{3,4,5},6,7\}$. Somit sind die Zahlen $\{\textcolor{green}{3,4,5}\}$ die Schnittmenge der beiden Mengen. Man schreibt:

$A \; \bigcap B$

Merke

Merke

Hier klicken zum Ausklappen

Die Schnittmenge ist die Menge der Zahlen, die sich in zwei verschiedenen Mengen befinden. Hierbei sind beide Mengen nicht identisch oder Teilmengen zueinander. Man schreibt:

$A \; \bigcap B$

Vereinigungsmenge

Die Vereinigungsmenge ist, wie der Name schon vermuten lässt, eine Kombination beider Mengen zu einer großen Menge. Hierbei kann es auch vorkommen, dass einzelne Elemente in beiden Mengen vorhanden sind. Diese werden jedoch immer nur einmal gezählt. In einer Formel schreibt man dann:

$A \cup B$

Merke

Merke

Hier klicken zum Ausklappen

Die Vereinigungsmenge ist die Summe von zwei Mengen. Doppelte Elemente werden einzeln gezählt.

$A \cup B$

Gleichheit von Mengen

Unter der Gleichheit von Mengen versteht man den Zustand, wenn zwei Mengen vorhanden sind, die exakt dieselben Elemente beinhalten. Man schreibt $A = B$.

Differenz und Komplement

Zuletzt betrachten wir die Differenz bzw. das Komplement zweier Mengen. Der Name Differenz gibt auch hier wieder einen Tipp, wie die Lösung aussehen muss, denn die Differenz ist die Menge A, in der keine Elemente aus Menge B enthalten sind. Man sagt dann $A  ohne  B$. Folgend ein Beispiel:

Gegeben sind die Mengen $A = \{1,2,3,4,5 \}$ und $B = \{4,5,6,7,8\}$.

Die Differenz der beiden Mengen ist:

$A \backslash B = \{1,2,3\}$, denn die Elemente $4$ und $5$ sind Teil der Menge $B$ und fallen somit weg.

Merke

Merke

Hier klicken zum Ausklappen

Die Gleichheit von Mengen besagt, dass zwei Mengen mit denselben Elementen, eine Menge ist. Man schreibt:

$A = B$

Die Differenz bzw. das Komplement zweier Mengen ist die Differenz beider Mengen. Doppelte Elemente fallen hierbei weg. Man schreibt:

$A \backslash B$

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was ist die Vereinigungsmenge?

Teste dein Wissen!

Bilde das Komplement der Mengen:
$A =\{1,3,5,7,9,11,13,15\}$ und $B = \{10,11,12,13,14,15\}$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was versteht man in der Mathematik unter einer Obermenge und einer Teilmenge?
Markiere die richtigen Antworten.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist der Unterschied zwischen einer leeren Menge und einer Schnittmenge?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Melanie F., vom 2019-11-26
Sichtbare Erfolge in kurzen Zeit.
Sebastian G. S., vom 2019-11-21
Sehr netter Kontaktaufnahme. Professionelle Erklärung der Abläufe und kompetente Lehrer, die die Lerndefizite des Schülers sofort erkennen und der Lernstoff weitergeben können. Die Noten haben sich innerhalb 4 Wochen verbessert. Wir können sie nur weiter empfehlen
anonymisiert, vom 2019-11-17
Bin zufrieden.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7939