Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Zahlenmengen: natürliche und ganze Zahlen

Zahlenmengen: natürliche und ganze Zahlen! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In der Mathematik gibt es verschiedene Gruppen von Zahlen, darunter die natürlichen, die rationalen oder auch die irrationalen Zahlen. Doch was genau in diesen Zahlenmengen enthalten ist, sagt dir nicht immer der Name. Hier werden wir dir die Menge der natürlichen und der ganzen Zahlen näher erklären.

Gut zu wissen

Möchtest du etwas über die anderen Zahlenmengen lernen? Dann schau doch mal im Lerntext zum Thema  rationale, irrationale und reelle Zahlen vorbei!

4 Fakten über natürliche und ganze Zahlen

Wir haben dir hier schonmal das Wichtigste über die Zahlenmenge der natürlichen und ganzen Zahlen aufgelistet:

Methode

  1. Alle positiven Zahlen bis Unendlich, die keine Nachkommastelle haben, gehören zu der natürlichen Zahlenmenge $ℕ$.
  2. Die Zahl $0$ wird in der Regel nicht der Menge der natürlichen Zahlen zugeordnet.
  3. Die ganze Zahlenmenge $ℤ$ schließt alle Zahlen ein, die keine Nachkommastelle haben: die natürlichen Zahlen, alle negativen Zahlen und die Zahl $0$.
  4. Die Zahl $0$ wird der Menge der ganzen Zahlen zugeordnet.

Noch nicht alles klar? Du hast jetzt eine kleine Übersicht über natürliche und ganze Zahlen erhalten. Wir möchten dir nun alles etwas detaillierter erklären, damit du fit in diesem Thema wirst.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Natürliche Zahlen

Die natürliche Zahlenmenge ist die einfachste Zahlenmenge, denn jede Zahl, die du am Anfang deines Mathematikunterrichtes kennenlernst, sind natürliche Zahlen. Diese haben auch ein bestimmtes Symbol, damit man sie erkennt.

Merke

Die natürlichen Zahlen sind alle Zahlen von 1 bis unendlich $(\infty)$. Zudem haben sie keine Nachkommastelle. Die Schreibweise ist:

$\Large{ℕ = (1,2,3,4,..., \infty)}$, oder

$\Large{ℕ_{+} = (1,2,3,4,..., \infty)}$

Natürliche Zahlen und die Null

Die natürlichen Zahlen sind also alle positiven Zahlen, die keine Nachkommastelle haben. Wie verhält es sich jedoch mit der Zahl $0$? Diese hat keine Nachkommastelle und könnte auch in die Menge der natürlichen Zahlen passen.

In der Regel wird die $0$ nicht zu den natürlichen Zahlen gezählt. Wenn sie jedoch dazu gezählt wird, muss es ersichtlich werden und man schreibt es dann wie folgt:

Merke

Die natürlichen Zahlen, einschließlich der $0$, werden wie folgt geschrieben:

$\Large{ℕ_{0} = (1,2,3,4,..., \infty)}$

Ganze Zahlen

ganze Zahlen
Zahlenstrahl mit ganzen Zahlen. Die Zwischenräume zwischen den Zahlen sind keine ganzen Zahlen.

Die ganzen Zahlen erweitern die natürlichen Zahlen um die negativen Zahlen. Also sind die Zahlen $-1, -2, -3,...$ Teil der ganzen Zahlen.

Merke

Die ganzen Zahlen schließen alle Zahlen ein, die keine Nachkommastelle haben. Sie umfassen die Zahlen von $-\infty \; bis +\infty$, somit auch immer die Zahl $0$.

Das Symbol für die ganzen Zahlen ist das $\Large{ℤ}$

Die Schreibweise ist: $\Large{ℤ = (..., -3, -2, -1, 0, 1, 2, 3, ...)}$

Ganze Zahlen - Entgegengesetzte Zahlen

Der Begriff der entgegengesetzten Zahlen beschreibt die Zahlen, die den gleichen Abstand zur $0$ haben, also die Zahlen $-8 \;$ und $8 \;$ oder $-4\;$ und $4 \;$. Die Entfernung der beiden Zahlen ist damit genau $2 \cdot \;"Zahl"$, bei den ersten beiden Beispielen also $2 \cdot \;8 = 16$ und bei $2 \cdot \; 4 = 8$.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen zu ganzen Zahlen und anderen Zahlen!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Markiere die richtigen Lösungen.

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Was zeichnet eine ganze Zahl aus?

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtigen Aussagen:

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussagen stimmen?

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

17.05.2024
Meine Tochter fühlt sich sehr wohl, ist noch nicht lange dabei, aber laut ihren Berichten wird ihr das Thema sehr gut erklärt und gut verständlich beigebracht, nur an dem umsetzen hapert es noch.
15.05.2024 , von Natascha M.
Freundliches Team, Nachhilfe bringt was.
15.05.2024 , von Susan N.
Wir sind mit allem total zufrieden und vorallem ist unser Sohn zufrieden. Die erste tolle Note nach nur wenigen Stunden Nachhilfe. Danke an das Team in Dresden, ihr macht einen tollen Job.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8637