Mathematik > Zahlenlehre und Rechengesetze

Wurzelgleichungen lösen - Beispiele und Übungen

Inhaltsverzeichnis:

Gleichungen, bei denen die unbekannte Variable $x$ unterhalb einer Wurzel steht, nennt man Wurzelgleichungen. Im Folgenden schauen wir uns an, wie wir Wurzelgleichungen lösen können.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Lösen einer Wurzelgleichung

Um Wurzelgleichungen zu lösen, musst du eine Gleichung quadrieren können. Dies bedeutet, dass du beide Seiten der Gleichung hoch zwei nehmen musst. In den meisten Fällen führt dies zu einer quadratischen Gleichung, die wir mithilfe der p-q-Formel lösen können. Schauen wir uns dazu einige Beispiele an:

$\sqrt[]{x+5} = x+1~~~~~|quadrieren$

$x + 5 = (x + 1)^2$

Methode

Methode

Hier klicken zum Ausklappen

Die Klammer lösen wir mithilfe der ersten Binomischen Formel auf: $(a+b)^2 = a^2 + 2\cdot a\cdot b + b^2$

$x + 5 = x^2 + 2\cdot x + 1~~~~~|-x$

$5 = x^2 + x + 1~~~~~|- 5$

$0 = x^2 + x - 4$

Merke

Merke

Hier klicken zum Ausklappen

p-q Formel:

Für eine Gleichung der Form $x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$ gilt:

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$0 = x^2  \textcolor{red}{+1} \cdot x \textcolor{orange}{-4}~~~~~|p-q-Formel$

$x_{1|2} = -\frac{1}{2} \pm \sqrt[]{(\frac{1}{2})^2 + 4}$

$x_{1|2} = - 0,5 \pm \sqrt[]{4,25}$

$x_1 \approx 1,56$

$x_2 \approx -2,56$

Wir sind allerdings noch nicht fertig. Die p-q-Formel ergibt zwei Ergebnisse, von denen oft nur eines die Lösung der Wurzelgleichung ist. Du musst also auf jeden Fall eine Probe durchführen!

Setzen wir $1,56$ in die Ausgangsgleichung ein, erhalten wir eine wahre Aussage ($2,56 = 2,56$). Setzen wir jedoch $-2,56$ ein, erhalten wir eine unwahre Aussage ($1,56 = -1,56$). Die Lösung der Wurzelgleichung ist also nur $1,56$.

Schau dir noch ein weiteres Beispiel an:

Beispiel

Beispiel

Hier klicken zum Ausklappen

$\sqrt[]{6\cdot x + 6} = 3 - 2\cdot x~~~~~|quadrieren$

$6 \cdot x + 6 = (3 - 2\cdot x)^2$

$6 \cdot x + 6 = 3^2 - 2\cdot  3 \cdot 2 \cdot x + (2\cdot x)^2$

$6 \cdot x + 6 = 4\cdot x^2 - 12\cdot x + 9~~~~~|- 6$

$6 \cdot x = 4 \cdot x^2 - 12 \cdot x + 3~~~~~|- 6\cdot x$

$0 = 4\cdot x^2 - 18 \cdot x + 3~~~~~|:4$

$0 = x^2 - 4,5 \cdot x + 0,75 ~~~~~|p-q-Formel$

$x_{1|2} = -\frac{-4,5}{2} \pm \sqrt[]{(\frac{-4,5}{2})^2 - 0,75}$

$x_{1|2} = 2,25 \pm \sqrt[]{4,3125}$

$x_1 \approx 4,33$

$x_2 \approx 0,17$

Die Probe ergibt, dass nur $0,17$ die Lösung für die Wurzelgleichung ist.

Wurzelgleichungen mit zwei Wurzeln

In Wurzelgleichungen, die aus zwei Wurzeln bestehen, taucht die Unbekannte $x$ gleich zweimal auf. Das Lösen solcher Gleichungen ist ein wenig aufwändiger. Schauen wir uns auch hierzu ein Beispiel an:

$\sqrt[]{x+7} - \sqrt[]{x+2} - 1 = 0$

Im ersten Schritt bringen wir die Wurzeln auf unterschiedliche Seiten der Gleichung.

$\sqrt[]{x+7} - \sqrt[]{x+2} - 1 = 0~~~~~|+ \sqrt[]{x+2}$

$\sqrt[]{x+7} - 1 = \sqrt[]{x+2}$

Nun können wir beide Seiten der Gleichung quadrieren. Dabei müssen wir darauf achten, die Seiten wirklich in Gänze zu quadrieren.

$\sqrt[]{x+7} - 1 = \sqrt[]{x+2}~~~~~|quadrieren$

$(\sqrt[]{x+7} - 1)^2 = (\sqrt[]{x+2})^2$

Die linke Seite können wir nun mithilfe der 2. Binomischen Formel weiter auflösen.

$(\sqrt[]{x+7})^2 - 2\cdot \sqrt[]{x+7} + 1 =x + 2$

$x + 7 - 2\cdot \sqrt[]{x+7} + 1 = x + 2$

$x - 2 \cdot \sqrt[]{x + 7} + 8 = x + 2~~~~~|-x$

$-2 \cdot \sqrt[]{x+7} + 8 = 2~~~~~|-8$

$- 2 \cdot \sqrt[]{x+7} = - 6~~~~~|: (-2)$

$\sqrt[]{x+7} = 3$

Nach einigen Umformungen erhalten wir eine normale Wurzelgleichung mit einer Wurzel und einer Unbekannten. Diese Gleichung lässt sich nun wieder durch Quadrieren lösen.

$\sqrt[]{x+7} = 3~~~~~| quadrieren$

$(\sqrt[]{x+7})^2 = 3^2$

$x + 7 = 9~~~~~|-7$

$x = 2$

Wir erhalten in diesem Fall nur eine Lösung. Du musst dennoch die Probe machen. Wenn du $x = 2$ in die Ausgangsgleichung ($\sqrt[]{x+7} - \sqrt[]{x+2} - 1 = 0$) einsetzt, erhältst du eine wahre Aussage ($0=0$). $x = 2$ ist also die Lösung für die Gleichung.

Teste dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Womit lassen sich quadratische Gleichungen lösen?

Teste dein Wissen!

Löse die folgende Wurzelgleichung:

$\sqrt[]{x} + x = 2$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Die Wurzelgleichung ergibt zwei mögliche Lösungen für $x$. Welche der zwei Lösungen ist tatsächlich korrekt?

$2\cdot x = 7 + \sqrt[]{x + 4}$

$x_1 = 5 ~~~~~x_2 = 2,25$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussage ist richtig?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2019-11-18
Klappt super
anonymisiert, vom 2019-11-17
Bin zufrieden.
anonymisiert, vom 2019-11-17
Ich finde meinen Lehrer sehr gut aber wenn ich mal was ändern möchte kann ich keinen bei der online Nachhilfe erreichen per Telefon. Auch beim Rückruf dauert es sehr sehr lange bis man zurück gerufen wird. Ich würde mir auch bei Studenten, Langzeit Tarife wünschen die billiger sind weil man hat als Student nicht so viel Geld. Aber insgesamt bin ich ganz zufrieden. Mechanik wäre noch gut als Fach.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7985