Standortsuche
Ihr Kontakt zu uns:
Standort auswählen & gratis beraten lassen
Kontaktformular

Kehrwertsätze des Logarithmus

Mathematik > Zahlenlehre und Rechengesetze
Kehrwertsätze des Logarithmus! | Mathe verstehen mit dem Studienkreis
x Der Link wurde in die Zwischenablage kopiert
Inhaltsverzeichnis:

Neben den Logarithmusgesetzen helfen dir beim Rechnen mit Logarithmen auch die sogenannten Kehrwertsätze. Zunächst sollest du dir noch einmal in Erinnerung rufen, wie die verschiedenen Bestandteile des Logarithmus heißen. Bei den Kehrwertsätzen der Logarithmen tauschen die verschiedenen Variablen nämlich ihren Platz und man kann schnell den Überblick verlieren.

Logarithmus mit der Basis a und dem Numerus b.

Logarithmus mit der Basis a und dem Numerus b.

Die Variable $\textcolor{blue}{a}$ wird Basis genannt, die Variable $\textcolor{black}{b}$ Numerus oder etwas veraltet auch Logarithmand. Die Frage, die hinter dem Logarithmus steckt, lautet: Mit welcher Zahl muss ich die Basis $\textcolor{blue}{a}$ hoch nehmen, um den Numerus $\textcolor{black}{b}$ zu erhalten?

Methode

Was ist der Kehrwert?

$x~ \rightarrow \frac{1}{x}$

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen

Kehrwert eines Logarithmus

Merke

Logarithmen können berechnet werden, indem man Basis und Numerus vertauscht und den Kehrwert bildet.

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b})~=~ \frac{1}{\log_{\textcolor{black}{b}}(\textcolor{blue}{a})}$

Dieser Kehrwertsatz ist ein Spezialfall des Basiswechselsatzes. Dabei wählen wir den Numerus als neue Basis.

Gut zu wissen

Hinweis

Basiswechselsatz

Für den Fall, dass ein Logarithmus zur Basis $\textcolor{blue}{a}$ unbekannt ist, kann man ihn in einen Quotienten zweier Logarithmen zu einer beliebigen Basis ($\textcolor{green}{c}$) umwandeln.

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b})~=~ \frac{\log_{\textcolor{green}{c}}(\textcolor{black}{b})}{\log_{\textcolor{black}{\textcolor{green}{c}}}(\textcolor{blue}{a})}$

Wir können den Basiswechselsatz also anwenden, um den ersten Kehrwertsatz zu beweisen:

$\log_{a}(b) = \frac{\log_{b}(b)}{\log_{b}(a)}$

Da $\log_{b}(b)~=~1$ erhalten wir den Satz:

$\log_{a}(b) = \frac{1}{\log_{b}(a)}$

Beispiel

$\log_{8}(2) = \frac{1}{\log_{2}(8)} = \frac{1}{3}$

Logarithmus des Kehrwerts

Merke

Ein Logarithmus des Numerus $\textcolor{black}{b}$ und der Logarithmus von dessen Kehrwert ($\frac{1}{\textcolor{black}{b}}$) unterscheiden sich nur durch das Vorzeichen:

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = - \log_{\textcolor{blue}{a}}(\frac{1}{\textcolor{black}{b}})$

Diese Rechenregel lässt sich mithilfe des 3. Logarithmusgesetzes herleiten. Nach dem dritten Logarithmusgesetz entspricht der Logarithmus einer Potenz dem Exponenten mal dem Logarithmus der Basis der Potenz:

$\log_{a}(b^x) = x \cdot \log_{a}(b)$

Wenden wir diese Rechenhilfe nun rückwärts auf den Logarithmus des Kehrwerts an, erhalten wir den zweiten Kehrwertsatz:

$- \log_{a}(\frac{1}{b}) = -1 \cdot \log_{a}(\frac{1}{b}) = \log_{a}((\frac{1}{b})^{-1}) = \log_{a}(b)$

Beispiel

$\log_{2}(0,25) = - \log_{2}(\frac{1}{0,25}) = - \log_{2}(40) = - 2$

Doppel-Kehrwertsatz

Merke

Ein Logarithmus einer Zahl ist gleich dem Logarithmus, bei dem sowohl von der Basis als auch vom Numerus der Kehrwert gebildet wurde:

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = \log_{\frac{1}{\textcolor{blue}{a}}}(\frac{1}{\textcolor{black}{b}})$

Beispiel

$\log_{0,25}(\frac{1}{16})~=~\log_{\frac{1}{0,25}}(1~:~ \frac{1}{16})~=~\log_{4}(16) = 2$

Hier findest du eine Übersicht über alle Kehrwertsätze des Logarithmus:

Merke

Kehrwert eines Logarithmus

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b})~=~ \frac{1}{\log_{\textcolor{black}{b}}(\textcolor{blue}{a})}$

Logarithmus eines Kehrwerts

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = - \log_{\textcolor{blue}{a}}(\frac{1}{\textcolor{black}{b}})$

Doppel-Kehrwertsatz

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = \log_{\frac{1}{\textcolor{blue}{a}}}(\frac{1}{\textcolor{black}{b}})$

Teste nun dein neu erlerntes Wissen mit unseren Übungsaufgaben!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Teste dein Wissen!
Übungsaufgaben

Teste dein Wissen!

Wie lässt sich dieser Logarithmus noch ausdrücken?

$\log_{3}(9)$

Teste dein Wissen!

Wie lässt sich dieser Logarithmus noch ausdrücken?

$- \log_{2}(\frac{1}{64})$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie kann man diesen Logarithmus noch ausdrücken?

$\log_{2}(32)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wie lautet der Kehrwert von $5$?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.

Du möchtest mehr Aufgaben?
Teste kostenlos unser Lernportal mit vielen Übungen & Lösungen.

Du brauchst mehr Hilfe?
Wir unterstützen Dich!

Online-Lernen

Wissen vertiefen?

Online-Lernportal

Wir unterstützen Dich mit:

  • Lernvideos
  • Über 250.000Übungsaufgaben - auch als PDF inkl. Lösungen
  • Hausaufgaben Live-Chat
Online-Nachhilfe

Online-Nachhilfe

Einzelnachhilfe

Du benötigst individuelle Hilfe?

Dann teste unsere Online-Einzelnachhilfe gerne in einer gratis Probestunde. Mehr Infos zur Online-Nachhilfe

Nachhilfe vor Ort

Nachhilfe vor Ort

Kleine Lerngruppen

Wenn Du gerne mit anderen vor Ort lernst, dann ist unsere Nachhilfe auch in Deiner Nähe.

Teste uns gerne in 2 gratis Probestunden.

Unsere Kunden über den Studienkreis
Feedback von Eltern & Schüler:innen

Bewertung bundesweit
03.11.2025
Sehr gut Qualität
31.10.2025
Die Organisation war mit Frau Ay sehr gut. Unser Kind hat für den Start in den Schulalltag Nachhilfe im Fach Englisch und Deutsch bekommen. Dort wurden in den je 45 Minuten Stunden die Hausaufgaben und die Stunden nachgearbeitet. Die Lehrer waren engagiert, jedoch haben mir in Deutsch Übungstexte gefehlt. Dort wurde im Arbeitsheft gearbeitet, jedoch keine freien Texte geschrieben. Im Englisch hat sich der Lehrer ebenfalls am Buch orientiert, vielleicht zu viel Theorie. Aber alles in allem würde ich den Studienkreis weiter empfehlen.
25.10.2025
Unser Sohn (10. Klasse, Gymnasium) besucht Privatkurse beim Studienkreis, Die Nachhilfe und innerhalb von wenigen Monaten merkt er deutliche Fortschrittei im Bereich Naturwissenschaften. Seine Schulleistungen bestätigen den Erfolg und wir sind alle begeistert und emphelen dieses Zentrum mit Nachdruck!

Noch Fragen?
Wir sind durchgehend für dich erreichbar

Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7931