Mathematik > Überblick: Mathematik in den Klassen 5 - 10

Begriffssammlung Mathematik 10. Klasse

Inhaltsverzeichnis:

Die Begrifflichkeiten der 10. Klasse in der Mathematik werden dir in diesem Kapitel alle in einzelnen Merkboxen erklärt. Für weitere Informationen zu den jeweiligen Themen kannst du die einzelnen verlinkten Überschiften anklicken, um auf die Lerntexte zu gelangen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Zahlenlehre und Rechengesetze

Der Logarithmus

Merke

Merke

Hier klicken zum Ausklappen

Der Logarithmus gibt uns die Möglichkeit, eine Potenz nach dem Exponenten umzustellen:

$a^n = b$       ⇔     $\log_{a} (b) = n$

Dekanischer, binärer und natürlicher Logarithmus

Merke

Merke

Hier klicken zum Ausklappen

Der dekadische Logarithmus ist ein Logarithmus zur Basis 10.

$\log_{10}~x$ =$~lg$   $x$

Der binäre oder duale Logarithmus ist ein Logarithmus zur Basis 2.

$\log_{2} x$ = $lb§   $x$ = $ld$   $x$

Der natürliche Logarithmus ist ein Logarithmus zur Basis $e$.

$\log_{e} x~$=$~ln$   $x$

$e = 2,71828...$

p-q-Formel

Merke

Merke

Hier klicken zum Ausklappen

Die p-q-Formel ist eine Formel zur Berechnung von Nullstellen bei quadratischen Funktionen.

Quadrat- und Kubikwurzeln

Merke

Merke

Hier klicken zum Ausklappen

Quadratwurzeln und Kubikwurzeln sind nichtnegative reelle Zahlen.

Für eine Quadratwurzel gilt: √$a$ = $b$   ⇔   $b$ 2 = $a$

Für eine Kubikwurzel gilt: 3√$a$ = $b$   ⇔   $b$3 = $a$

Das Heronverfahren

Merke

Merke

Hier klicken zum Ausklappen

Das Heronverfahren oder babylonisches Wurzelziehen ist eine Methode zur näherungsweisen Berechnung einer Quadratwurzel.

Definitions- und Lösungsmenge

Merke

Merke

Hier klicken zum Ausklappen

Der Definitionsbereich oder auch Definitionsmenge $\mathbb{D}$ ist die Menge aller Zahlen $x$, für die die Funktion definiert ist.

Der Wertebereich oder Wertemenge ist die Menge aller Zahlen $y$, die die Funktion annehmen kann. Daher schreibt man für Werte auch $f(x)$.

Die Lösungsmenge einer Gleichung besteht aus allen Zahlen, für die diese Gleichung wahr ist.

Mengen und Elemente

Merke

Merke

Hier klicken zum Ausklappen

Eine Menge ist eine Zusammenfassung von einzelnen Elementen.

Ein Beispiel ist die Menge der natürlichen Zahlen ohne Null: ℕ = {1,2,3,4…}

Die Elemente sind Objekte aus dieser Menge: Wir schreiben zum Beispiel $3$ ∈ ℕ

gesprochen: 3 ist ein Element von ℕ

Die Mächtigkeit oder Kardinalzahl gibt an, wie viel Elemente in dieser Menge sind.

Die Mächtigkeit der Menge der natürlichen Zahlen ist unendlich. Geschrieben wird das auch so: | ℕ |= ∞.

Primzahlen

Merke

Merke

Hier klicken zum Ausklappen

Eine Primzahl ist eine Zahl, die genau 2 Teiler hat, nämlich 1 und sich selbst.

Die natürlichen Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Die natürlichen Zahlen sind alle ganzen Zahlen ab der Zahl $1$, wenn es kenntlich gemacht wurde sogar ab der Zahl $0$.

Entweder:  ℕ =  {1, 2, 3, 4 ...}

Oder:  ℕ 0 = {0, 1, 2, 3, 4 ...}

Das Symbol der natürlichen Zahlen ist das $\Large{ℕ}$.

Die ganzen Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Das Symbol der ganzen Zahlen ist das $\large{ℤ}$

Die Menge aller ganzen Zahlen ist $ ℤ$ =   { ... , -3, -2, -1, 0, 1, 2, 3, 4, ...}.

Die rationalen Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Die rationalen Zahlen sind alle Zahlen, die als Bruch aus ganzzahligem Zähler und Nenner geschrieben werden können. Auch ganze oder natürliche Zahlen zählen dazu.

Das Symbol der rationalen Zahlen ist das $\large{ℚ}$.

Die irrationalen Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Die irrationalen Zahlen sind alle Zahlen, die nicht als Bruch aus ganzzahligem Zähler und Nenner geschrieben werden können. Beispiele hierfür sind:

$\pi, \sqrt{2}$

Die irrationalen Zahlen werden auch mit 𝕀 bezeichnet.

Die reellen Zahlen

Merke

Merke

Hier klicken zum Ausklappen

Die reellen Zahlen sind die Vereinigung der rationalen und irrationalen Zahlen.

Ihr Symbol der reellen Zahlen ist das $\large{ℝ}$.

$\large{ ℝ = ] - ∞ , ∞ [ }$

Intervalle

Merke

Merke

Hier klicken zum Ausklappen

Intervalle sind eine definierte Menge von Zahlen.

Intervalle sind zusammenhängende Teile eines vordefinierten Bereichs.

Beispiel: Wir legen die Menge aller reellen Zahlen zugrunde.

[2,7] ist dann eine Teilmenge der reellen Zahlen, die neben der 2 und der 7 auch alle Zahlen zwischen diesen beiden Intervallgrenzen enthält. Dieses Intervall heißt geschlossenes Intervall

.

]2,7[ ist dann eine Teilmenge der reellen Zahlen, die die 2 und die 7 nicht enthält, aber alle Zahlen zwischen diesen beiden Intervallgrenzen enthält. Dieses Intervall heißt offenes Intervall.

]2,7] ist dann eine Teilmenge der reellen Zahlen, die die 2 nicht, aber die 7 und alle Zahlen zwischen diesen beiden Intervallgrenzen enthält. Dieses Intervall heißt halboffenes Intervall. Das Intervall ist hier nach links offen. Das Intervall kann auch nach rechts offen sein [2,7[. Hier ist die 7 nicht enthalten.

Ein nach oben unbeschränktes Intervall ist zum Beispiel [-25, ∞[. Die obere Grenze ist hier unbestimmt. Also gibt es keine Schranke nach oben. Die Klammer bei der Zahl sagt dir, ob die Zahl dazu gehört oder nicht. Unbeschränkt kann ein Intervall auch nach unten oder nach beiden Seiten sein.

Die Menge aller reellen Zahlen ist also auch ein nach beiden Seiten unbeschränktes Intervall .

Zahlenstrahl, Zahlengerade und Betragsfunktion

Merke

Merke

Hier klicken zum Ausklappen

Der Zahlenstrahl ist eine Darstellungsform in der Mathematik. Er hat einen Startpunkt und keinen Endpunkt. Auf einem Zahlenstrahl sind Zahlen geordnet dargestellt.

Die Zahlengerade ist eine Darstellungsform in der Mathematik. Sie hat weder Anfangs- noch Endpunkt. Auf einer Zahlengeraden sind Zahlen angeordnet. Das uns bekannte Koordinatensystem besteht zum Beispiel aus zwei rechtwinklig verlaufenden Zahlengeraden.

Beträge sind Zahlen, die immer positiv oder Null sind. So ist zum Beispiel: ❘ -3 ❘ = 3 und ❘ 11,5 ❘ = 11,5.

Polynomdivision

Merke

Merke

Hier klicken zum Ausklappen

Die Polynomdivision ist eine Methode, mit der du Funktionen vereinfachen kannst, um danach die Nullstellen zu berechnen.

Geometrie

Sinus

Merke

Merke

Hier klicken zum Ausklappen

Der Sinus ist eine Funktion, die einem Winkel eine Zahl zuordnet. Daher gehört Sinus zu den Winkelfunktionen.

Im rechtwinkligen Dreieck ist das so: $Sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$

Kosinus

Merke

Merke

Hier klicken zum Ausklappen

Der Kosinus ist eine Funktion, die einem Winkel eine Zahl zuordnet. Daher gehört Kosinus zu den Winkelfunktionen.

Im rechtwinkligen Dreieck ist das so: $Kosinus (\alpha) = \frac{Ankathete}{Hypotenuse}$

Tangens

Merke

Merke

Hier klicken zum Ausklappen

Der Tangens ist eine Funktion, die einem Winkel eine Zahl zuordnet. Daher gehört Tangens zu den Winkelfunktionen.

Im rechtwinkligen Dreieck ist das so: $Tangens (\alpha) = \frac{Gegenkathete}{Ankathete}$

Strahlensätze

Merke

Merke

Hier klicken zum Ausklappen

Die Strahlensätze werden zur Berechnung von Längen einzelner Strecken benötigt.

Funktionen

Mitternachtsformel 

Merke

Merke

Hier klicken zum Ausklappen

Mit der Mitternachtsformel ist es möglich, so wie mit der $pq$-Formel auch, die Nullstellen einer quadratischen Funktionen zu berechnen.

Ableitungsregeln

Merke

Merke

Hier klicken zum Ausklappen

Regeln zum Ermitteln der Steigung einer Funktion in einem Punkt.

Exponentialfunktion

Merke

Merke

Hier klicken zum Ausklappen

Besondere Art der Funktion, bei der der Exponent eine Variable beinhaltet und die Basis eine Konstante ist.

e-Funktion

Merke

Merke

Hier klicken zum Ausklappen

Besondere Art der Funktion, bei der die Basis die Eulersche Zahl und der Exponent eine Variable ist.

Logarithmusfunktion

Merke

Merke

Hier klicken zum Ausklappen

Besondere Art der Funktion, bei der der Logarithmus enthalten ist.

Monotonie

Merke

Merke

Hier klicken zum Ausklappen

Beschreibt das Steigungsverhalten einer Funktion. 

Kurvendiskussion

Merke

Merke

Hier klicken zum Ausklappen

Die Kurvendiskussion ist ein Steckbrief für eine Funktion. Diese erfolgt in mehreren Schritten:

  • Definitionsmenge
  • Schnittpunkte mit den Koordinatenachsen
  • Symmetrieverhalten
  • Verhalten im Unendlichen
  • Monotonie und Extremwerte
  • Krümmung und Wendepunkte
  • Wertebereich und Graph

Wahrscheinlichkeitsrechnung und Statistik

Permutation

Merke

Merke

Hier klicken zum Ausklappen

Permutation leitet sich aus dem Lateinischen ab und bedeutet so viel wie vertauschen.

Eine Permutation ist eine Anordnung von Objekten in einer bestimmten Reihenfolge.

Die Anzahl der Ausgänge bei Zufallsexperimenten ist, je nach Betrachtungsweise, die Anzahl der Permutationen.

.

Variation

Merke

Merke

Hier klicken zum Ausklappen

Die Anzahl der Variationen gibt an, wie viele Möglichkeiten es bei einem Zufallsexperiment gibt, wenn die Reihenfolge eine Rolle spielt.

Ich habe die Buchstaben a, b und c, die alle hintereinander ohne Zurücklegen gezogen werden. Dann ist abc eine Variation, aber auch acb, bac, bca, cab und cba. Die Anzahl ist 6. Es ist nicht egal, in welcher Reihenfolge die drei Buchstaben gezogen werden. Die Reihenfolge ist also wichtig. Das geht auch mit Zurücklegen.

Kombination

Merke

Merke

Hier klicken zum Ausklappen

Die Anzahl der Kombinationen gibt an, wie viele Möglichkeiten es bei einem Zufallsexperiment gibt, wenn die Reihenfolge keine Rolle spielt.

Ich habe die Buchstaben a, b und c, die alle hintereinander ohne Zurücklegen gezogen werden. Dann ist abc die einzige Kombination. Die Anzahl ist 1, da es egal ist, in welcher Reihenfolge die drei Buchstaben gezogen werden. Das geht auch mit Zurücklegen.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Markiere die Winkelfunktionen.

(Es können mehrere Antworten richtig sein)
Teste dein Wissen!

Welche Formen von Intervallen gibt es? Markiere die richtigen Antworten.

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welches Symbol stellt einen Logarithmus dar?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Mathematik > Überblick: Mathematik in den Klassen 5 - 10

Weitere Erklärungen & Übungen zum Thema

Begriffssammlung Mathematik 10. Klasse
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-03-15
Alles ist ziemlich unkompliziert.
Alex B., vom 2020-01-31
Sehr bemühte Leitung des Studienkreises.
anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
7880