Variation ohne Wiederholung - Aufgaben und Beispiele
In diesem Lerntext beschäftigen wir uns mit der sogenannten Variation. Die Variation kommt aus dem Bereich der Kombinatorik und tritt in zwei Varianten auf: mit und ohne Wiederholung. In diesem Text geht es zunächst um Variationen ohne Wiederholung.
Was bedeutet Variation?
Die Variation gibt an, wie viele Möglichkeiten existieren, eine bestimme Auswahl an Objekten zu ordnen.
Beispiel
Beispiel
Die Variation hilft beim Lösen des folgenden Problems:
In einer Kiste befinden sich sechs verschiedenfarbige Kugeln, von denen vier Kugeln gezogen werden. Wie viele mögliche Kombinationen an gezogenen Kugeln gibt es?
Die Variation berücksichtigt also zwei Dinge: Zum einen gibt es verschiedene Möglichkeiten eine Auswahl zu treffen (vier Kugeln zu ziehen). Zum anderen kann diese Auswahl unterschiedlich geordnet werden.
Um die Variation zu berechnen, benötigen wir zwei Größen: Die Gesamtanzahl $n$ der Objekte und die Anzahl $k$ der Objekte, die ausgewählt wurden.
Der Unterschied zur Permutation ist also, dass wir die Ordnungsmöglichkeiten einer Auswahl berechnen und nicht der Gesamtmenge der Objekte.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Variation ohne Wiederholung berechnen
Merke
Merke
Um die Anzahl an Kombinationsmöglichkeiten einer Auswahl von $k$ Objekten von einer Gesamtanzahl an $n$ Objekten zu berechnen, benutzen wir folgende Formel:
$\Large {\frac{n!}{(n - k)!}}$
Gut zu wissen
Hinweis
Eine Variation ohne Wiederholung bedeutet, dass die ausgewählten Objekte $k$ nicht mehrfach auftauchen dürfen. Für den Fall, dass die Objekte mehrfach auftauchen, benötigen wir eine andere Rechnung.
Beispielaufgaben
Beispiel
Beispiel
In einer Kiste befinden sich sechs verschiedenfarbige Kugeln, von denen vier Kugeln gezogen werden. Wie viele Möglichkeiten gibt es, die Auswahl von vier Kugeln zu ordnen?
$\Large {\frac{n!}{(n - k)!} = \frac{6!}{(6 - 4)!} = \frac{6!}{2!}\frac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6}{1 \cdot 2} = \frac{720}{2} = 360}$
Es gibt insgesamt also $360$ Möglichkeiten, vier Kugeln aus einer Menge von sechs Kugeln zu ziehen und diese in den unterschiedlichsten Kombinationen zu ordnen.
Beispiel
Beispiel
Bei einem Autorennen nehmen $10$ Rennfahrer teil. Wie viele Kombinationsmöglichkeiten für die ersten drei Platzierungen sind möglich?
$\Large {\frac{n!}{(n - k)!} = \frac{10!}{(10 - 3)!} = \frac{10!}{7!} = \frac{1\cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 8 \cdot 9 \cdot 10}{1\cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} = \frac{3.628.800}{5040} = 720}$
Es gibt insgesamt $720$ Möglichkeiten für die Top 3-Platzierungen.
Teste dein neu erlerntes Wissen in unseren Übungsaufgaben!
Teste dein Wissen!
Wofür steht das $k$ in der Formel für die Berechnung der Variation ohne Wiederholung?
$\Large {\frac{n!}{(n - k)!}}$
Worin liegt der Unterschied zwischen Variation und Permutation?
Wie lautet die Formel für die Variation ohne Wiederholung?
In einem Behälter befinden sich zehn verschiedenfarbige Kugeln. Es werden zufällig vier dieser Kugeln gezogen. Wie viele Kombinationsmöglichkeiten gibt es?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema




















Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar

Jetzt registrieren und direkt kostenlos weiterlernen!
Dein Gratis-Lernpaket:
- Lern-Bibliothek: 1 Tag Gratis-Zugang
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
Schon registriert? Hier einloggen

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.
Dein Gratis-Lernpaket:
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Nachhilfe-Probestunden gratis
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Schon registriert? Hier einloggen

Jetzt registrieren und kostenlose Probestunde anfordern.
Dein Gratis-Lernpaket:
- Nachhilfe-Probestunden gratis
- Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
- Lern-Bibliothek: 1 Tag Gratis-Zugang
Bereits registriert? Hier einloggen