Mathematik > Geometrie

Erster und zweiter Strahlensatz: Formel und Erklärung

Inhaltsverzeichnis:

Die Strahlensätze sind ein wichtiges Thema in der Mathematik. Mit Hilfe der Strahlensätze kannst du zum Beispiel die Breite eines Flusses, die Höhe eines Turmes, eines Hauses oder eines Berges berechnen. Um mit den Strahlensätzen rechnen zu können, musst du jedoch erst einmal die Voraussetzungen für die Strahlensätze kennen lernen.

Strahlensätze - Erklärung

Strahlensätze können nur angewandt werden, wenn zwei (oder mehrere) Strahlen den gleichen Anfangspunkt besitzen. Zudem müssen diese Strahlen von zwei Geraden oder auch Strecken gekreuzt werden. Diese zwei Geraden bzw. Strecken müssen parallel zueinander sein. Es ist dabei egal, ob die parallelen Geraden/Strecken beide rechts bzw. links vom Anfangspunkt der Strahlen liegen oder ob sie auf unterschiedlichen Seiten des Anfangspunktes liegen. (Gucke dir dazu die beiden Abbildungen an, dann verstehst du, was wir meinen.)

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Strecken sind Verbindungslinien zwischen zwei Punkten, haben also einen Anfangspunkt und einen Endpunkt. Geraden sind endlos lang, besitzen also weder einen Anfangspunkt noch einen Endpunkt. Gerade können aber durch Punkte verlaufen.

Zweiter Strahlensatz

1. Strahlensatz

Im Bild wird der 1. Strahlensatz gezeigt. Der 1. Strahlensatz setzt ein Verhältnis aus zwei Teilabschnitten des einen Strahles gleich mit dem Verhältnis aus den entsprechenden Teilabschnitten des anderen Strahles. Somit stehen auf der einen Seite der Gleichung immer Strecken des einen Strahles und auf der anderen Seite der Gleichung die entsprechenden Strecken des anderen Strahles.

In Bezug auf die obige Abbildung gilt nach dem 1. Strahlensatz die Formel:

$\frac{\overline{SA}}{\overline{SC}} =\frac{\overline{SB}}{\overline{SD}}$      bzw.

$\frac{\overline{SA}}{\overline{AC}} =\frac{\overline{SB}}{\overline{BD}}$      bzw.

$\frac{\overline{AC}}{\overline{SC}} =\frac{\overline{BD}}{\overline{SD}}$

Bei jeder Gleichung können Zähler und Nenner auch vertauscht werden. Wenn du jedoch Zähler und Nenner auf der einen Seite der Gleichung vertauscht, musst du dies natürlich auch auf der anderen Seite der Gleichung machen.

Der 1. Strahlensatz vergleicht das Verhältnis der Teilabschnitte des einen Strahles mit dem Verhältnis der Teilabschnitte des anderen Strahles. Die Längen der Parallelen werden nicht beachtet.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

2. Strahlensatz

Der 2. Strahlensatz berücksichtigt nun die Längen der beiden parallelen Strecken. Der 2. Strahlensatz setzt das Verhältnis von zwei Teilabschnitten des einen Strahles gleich mit dem Verhältnis der zwei parallelen Strecken.

In Bezug auf die obige Abbildung gilt nach dem 2. Strahlensatz die Formel:

$\frac{\overline{SA}}{\overline{SC}} =\frac{\overline{AB}}{\overline{CD}}$      bzw.

$\frac{\overline{SB}}{\overline{SD}} =\frac{\overline{AB}}{\overline{CD}}$

Bei jeder Gleichung können Zähler und Nenner auch vertauscht werden. Wenn du jedoch Zähler und Nenner auf der einen Seite der Gleichung vertauscht, musst du dies natürlich auch auf der anderen Seite der Gleichung machen.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Nun noch ein Zahlenbeispiel zum zweiten Strahlensatz:

strahlensaetze_satz_1

In dem Bild sehen wir zwei Strahlen, die von zwei Parallelen gekreuzt werden. Bekannt sind die Längen der Seiten a, c und g. Wir wollen die Länge der Seite $\overline{CD}$ herausfinden. Wir nennen sie zur besseren Verständlichkeit einfach $x$.

Da wir die Länge einer Parallelen finden wollen, können wir den ersten Strahlensatz nicht anwenden. Also müssen wir den 2. Strahlensatz anwenden:

$\frac{a}{c} = \frac{g}{x}$

Auf der einen Seite der Gleichung stehen die Teilabschnitte eines Strahls und auf der anderen Seite der Gleichung die Parallelen. Im Zähler steht auf der linken Seite der Gleichung die Strecke, die bis zum Punkt $A$ führt und daher auf der rechten Seite der Gleichung auch die Parallele, die bis zum Punkt $A$ führt. Im Nenner steht auf der linken Seite der Gleichung die Strecke, die bis zum Punkt $C$ führt und daher auf der rechten Seite der Gleichung auch die Parallele, die bis zum Punkt $C$ führt.

Wir setzen nun die gegebenen Werte ein, und erhalten so:

$\frac{6 \;cm}{9 \;cm} = \frac{4 \;cm}{x}$

Diese Gleichung können wir nach $x$ auflösen und erhalten dann: $x= 6~cm$

Die Strecke $\overline{CD}$ ist also $6~cm$ lang.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg dabei!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

strahlensaetze_aufgabe

Berechne die Länge der Strecke $\overline{BD}$.

Teste dein Wissen!

Markiere die richtigen Aussagen.

Zweiter Strahlensatz

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtigen Gleichungen.

strahlensaetze_aufgabe

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was sind die Voraussetzungen, damit die Strahlensätze angewendet werden können?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-01-15
Mein Sohn hat deutlich sich verbessert. Die Unterrich ist Hilfreich.
anonymisiert, vom 2020-01-11
Sehr guter Service und sehr guter Lehrer
anonymisiert, vom 2020-01-10
Exzellente persönliche Betreuung. Es wird sich Zeit genommen für individuelle Probleme und diese werden kompetent gelöst. Das Lehrpersonal ist sehr erfahren und passt sich den jeweiligen Umständen sehr gut an. Ich kann den Studienkreis Wolfenbüttel uneingeschränkt weiterempfehlen
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8589