Mathematik > Geometrie

Sinus - Rechnen mit der Winkelfunktion

Inhaltsverzeichnis:

Die Winkelfunktionen Sinus, Kosinus und Tangens verwendest du, wenn du die Länge einer Seite oder die Größe eines Winkels in einem rechtwinkligen Dreieck berechnen möchtest.

Zunächst widmen wir uns der Definition des Sinus.

Definition des Sinus

Die erste Winkelfunktion, die wir behandeln, ist der Sinus. Er beschreibt das Verhältnis von Gegenkathete zu Hypotenuse.

Merke

Merke

Hier klicken zum Ausklappen
$sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$

Der Sinus von $\alpha$ (geschrieben $\sin( \alpha)$) ist die Gegenkathete von $\alpha$ geteilt durch die Hypotenuse. Somit beschreibt $\sin( \alpha)$ das Verhältnis der Längen von Gegenkathete und Hypotenuse. Das mag zunächst ein wenig kompliziert klingen, aber die folgenden Beispiele zeigen dir, dass es eigentlich ganz einfach ist.

Was können wir mit dem Sinus berechnen?

Mit dem Sinus kann man entweder die Länge der Hypotenuse oder die Länge der Gegenkathete oder die Größe des Winkels berechnen, je nachdem, welche der drei Größen gesucht ist. Die jeweils anderen beiden Größen müssen gegeben sein.

leicht erklärt text 1

Methode

Methode

Hier klicken zum Ausklappen

$Winkel = sin^{-1}(\frac{Gegenkathete}{Hypotenuse})$ 

$Gegenkathete = sin(Winkel)\cdot Hypotenuse$

$Hypotenuse = \frac{Gegenkathete}{sin(Winkel)}$

Auf diese Formeln kommst du durch Umformung der Grundformel $sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$. Daher musst du diese Formeln nicht auswendig lernen. Es ist aber dennoch hilfreich sie zu kennen. Vor allem, da du Aufgaben schneller lösen kannst, wenn du nicht erst die Formel umstellen musst.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Sinus - Aufgaben mit Lösungen

Beispiel

Beispiel

Hier klicken zum Ausklappen

Winkel

Um die Größe des Winkels $\alpha$ zu berechnen, musst du zuerst das Verhältnis von Gegenkathete zu Hypotenuse bestimmen. Also einfach $\frac{Gegenkathete}{Hypotenuse}$ ausrechnen. Das Ergebnis davon wird dann in die Umkehrfunktion von Sinus, also in $sin ^{-1}$, eingesetzt.

Beispiel

$\alpha =~?$,  Hypotenuse $=~6~cm$,  Gegenkathete $=~3~cm$


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(\alpha) = \frac{3~cm}{6~cm} = {0,5}$

$\alpha = {sin^{-1}(0,5)} = 30 ^\circ$


Somit gilt: $\alpha$ = $30^\circ$

Beispiel

Beispiel

Hier klicken zum Ausklappen

Gegenkathete

Zur Berechnung der Gegenkathete benötigst du die Länge der Hypotenuse und die Größe des Winkels. Du setzt beide Werte in die Formel ein und stellst die Formel dann nach der Gegenkathete um.

Beispiel

$\alpha = 30 ^\circ$ ,   Hypotenuse = $8,5~cm$ ,   Gegenkathete = $?$


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(30 ^\circ) = \frac{Gegenkathete}{8,5~cm}$

$sin(30 ^\circ)\cdot 8,5~cm = {Gegenkathete}$

$Gegenkathete = 4,25~cm$


Die Gegenkathete ist 4,25 cm lang.

Übrigens haben die Ergebnisse meist viele Nachkommastellen. Also wundere dich nicht, wenn dein Ergebnis viele Nachkommastellen hat. Du kannst das Ergebnis dann auf zwei Nachkommastellen runden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

Hypotenuse

Zuletzt zur Berechnung der Hypotenuse. Hierfür brauchst du die Länge der Gegenkathete und die Größe des Winkels.
Du setzt beide Werte wieder in die Formel ein. Dann stellst du die Formel nach der Hypotenuse um.

Beispiel

$\alpha = 45 ^\circ $ ,  Hypotenuse $=~?~cm$ ,  Gegenkathete $=~4~cm$ 


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(45 ^\circ) = \frac{4~cm}{Hypotenuse}$

$sin(45 ^\circ)\cdot Hypotenuse = {4~cm}$
 
$ Hypotenuse = \frac{4~cm}{sin(45 ^\circ)}$

$ Hypotenuse = 4\sqrt{2}~cm  {\approx}  5,657~cm$


Somit ist die Hypotenuse ungefähr 5,657 cm lang.

Merke

Merke

Hier klicken zum Ausklappen

In manchen Aufgaben sind die Seiten in unterschiedlichen Längeneinheiten angegeben. Dies kann vorkommen, wenn die Größe des Winkels gesucht ist und die Lägen der Gegenkathete und der Hypotenuse gegeben sind. Bevor du die Werte der Seiten in die Formel einsetzt, musst du die Längen dann zunächst so umrechnen, dass sie in derselben Einheit stehen, beispielsweise beide Seiten in Zentimeter oder beide Seiten in Meter.
 

Jetzt weißt du, wie man mit der Winkelfunktion Sinus umgeht. Dein neues Wissen kannst du nun an unseren Übungsaufgaben testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die fehlende Länge und runde das Ergebnis auf zwei Nachkommastellen. 

sin aufgabe 3

Teste dein Wissen!

sin aufgabe 4



Kreuze das Richtige an!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die fehlende Länge und runde das Ergebnis auf zwei Nachkommastellen.

$\alpha = 30,96^\circ $
Länge = 3 cm
Länge= 5 cm 

sin aufgabe 2

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Größe des Winkels!

Hypotenuse: 0,3 cm 
Gegenkathete: 2 mm

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

anonymisiert, vom 2020-09-17
Alles gute
anonymisiert, vom 2020-09-16
Die Leitung (Frau Gräf) ist sehr freundlich und geht den Wünschen nach. Auch Matheunterricht bringt unseren Sohn was.
Detlef R., vom 2020-09-15
Alles super, die Lehrer sind super lieb und meine Noten verbessern sich :)
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
n-tv Siegel Testsieger Nachhilfe Studienkreis 2019
TÜV-Gütesiegel - Servicequalität Nachhilfe
Service-Champions - Studienkreis - Nr. 1 der Nachhilfeanbieter
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
7840