Suche
Kontakt
>
Mathematik > Geometrie

Sinus - Rechnen mit der Winkelfunktion

Sinus - Rechnen mit der Winkelfunktion! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Die Winkelfunktionen Sinus, Kosinus und Tangens verwendest du, wenn du die Länge einer Seite oder die Größe eines Winkels in einem rechtwinkligen Dreieck berechnen möchtest.

Zunächst widmen wir uns der Definition des Sinus.

Definition des Sinus

Die erste Winkelfunktion, die wir behandeln, ist der Sinus. Er beschreibt das Verhältnis von Gegenkathete zu Hypotenuse.

Merke

$sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$

Der Sinus von $\alpha$ (geschrieben $\sin( \alpha)$) ist die Gegenkathete von $\alpha$ geteilt durch die Hypotenuse. Somit beschreibt $\sin( \alpha)$ das Verhältnis der Längen von Gegenkathete und Hypotenuse. Das mag zunächst ein wenig kompliziert klingen, aber die folgenden Beispiele zeigen dir, dass es eigentlich ganz einfach ist.

Was können wir mit dem Sinus berechnen?

Mit dem Sinus kann man entweder die Länge der Hypotenuse oder die Länge der Gegenkathete oder die Größe des Winkels berechnen, je nachdem, welche der drei Größen gesucht ist. Die jeweils anderen beiden Größen müssen gegeben sein.

leicht erklärt text 1

Methode

$Winkel = sin^{-1}(\frac{Gegenkathete}{Hypotenuse})$ 

$Gegenkathete = sin(Winkel)\cdot Hypotenuse$

$Hypotenuse = \frac{Gegenkathete}{sin(Winkel)}$

Auf diese Formeln kommst du durch Umformung der Grundformel $sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$. Daher musst du diese Formeln nicht auswendig lernen. Es ist aber dennoch hilfreich sie zu kennen. Vor allem, da du Aufgaben schneller lösen kannst, wenn du nicht erst die Formel umstellen musst.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Sinus - Aufgaben mit Lösungen

Beispiel

Winkel

Um die Größe des Winkels $\alpha$ zu berechnen, musst du zuerst das Verhältnis von Gegenkathete zu Hypotenuse bestimmen. Also einfach $\frac{Gegenkathete}{Hypotenuse}$ ausrechnen. Das Ergebnis davon wird dann in die Umkehrfunktion von Sinus, also in $sin ^{-1}$, eingesetzt.

Beispiel

$\alpha =~?$,  Hypotenuse $=~6~cm$,  Gegenkathete $=~3~cm$


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(\alpha) = \frac{3~cm}{6~cm} = {0,5}$

$\alpha = {sin^{-1}(0,5)} = 30 ^\circ$


Somit gilt: $\alpha$ = $30^\circ$

Beispiel

Gegenkathete

Zur Berechnung der Gegenkathete benötigst du die Länge der Hypotenuse und die Größe des Winkels. Du setzt beide Werte in die Formel ein und stellst die Formel dann nach der Gegenkathete um.

Beispiel

$\alpha = 30 ^\circ$ ,   Hypotenuse = $8,5~cm$ ,   Gegenkathete = $?$


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(30 ^\circ) = \frac{Gegenkathete}{8,5~cm}$

$sin(30 ^\circ)\cdot 8,5~cm = {Gegenkathete}$

$Gegenkathete = 4,25~cm$


Die Gegenkathete ist 4,25 cm lang.

Übrigens haben die Ergebnisse meist viele Nachkommastellen. Also wundere dich nicht, wenn dein Ergebnis viele Nachkommastellen hat. Du kannst das Ergebnis dann auf zwei Nachkommastellen runden.

Beispiel

Hypotenuse

Zuletzt zur Berechnung der Hypotenuse. Hierfür brauchst du die Länge der Gegenkathete und die Größe des Winkels.
Du setzt beide Werte wieder in die Formel ein. Dann stellst du die Formel nach der Hypotenuse um.

Beispiel

$\alpha = 45 ^\circ $ ,  Hypotenuse $=~?~cm$ ,  Gegenkathete $=~4~cm$ 


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(45 ^\circ) = \frac{4~cm}{Hypotenuse}$

$sin(45 ^\circ)\cdot Hypotenuse = {4~cm}$
 
$ Hypotenuse = \frac{4~cm}{sin(45 ^\circ)}$

$ Hypotenuse = 4\sqrt{2}~cm  {\approx}  5,657~cm$


Somit ist die Hypotenuse ungefähr 5,657 cm lang.

Merke

In manchen Aufgaben sind die Seiten in unterschiedlichen Längeneinheiten angegeben. Dies kann vorkommen, wenn die Größe des Winkels gesucht ist und die Lägen der Gegenkathete und der Hypotenuse gegeben sind. Bevor du die Werte der Seiten in die Formel einsetzt, musst du die Längen dann zunächst so umrechnen, dass sie in derselben Einheit stehen, beispielsweise beide Seiten in Zentimeter oder beide Seiten in Meter.
 

Jetzt weißt du, wie man mit der Winkelfunktion Sinus umgeht. Dein neues Wissen kannst du nun an unseren Übungsaufgaben testen. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Berechne die fehlende Länge und runde das Ergebnis auf zwei Nachkommastellen. 

sin aufgabe 3

Teste dein Wissen!

sin aufgabe 4



Kreuze das Richtige an!

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die fehlende Länge und runde das Ergebnis auf zwei Nachkommastellen.

$\alpha = 30,96^\circ $
Länge = 3 cm
Länge= 5 cm 

sin aufgabe 2

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Berechne die Größe des Winkels!

Hypotenuse: 0,3 cm 
Gegenkathete: 2 mm

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7840