Termumformungen und Klammern - Übungen
In diesem Kapitel befassen wir uns mit dem Umformen bzw. Vereinfachen von Termen, sowohl ohne als auch mit Klammern. Im Anschluss daran kannst du mit Übungen dein Wissen vertiefen.
Methode
Methode
Die Grundlage für dieses Kapitel bildet das Wissen über Terme und das Distributivgesetz. Die Themenseiten dazu kannst du durch klicken auf den jeweiligen Begriff erreichen.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Termumformungen
Manchmal sind Terme sehr lang oder unsortiert. In diesem Fall gibt es die Möglichkeit, sie zu vereinfachen bzw. umzuformen. Dabei werden die Werte der Terme nicht verfälscht, sondern nur zusammengezogen oder anders aufgeschrieben. Der mathematische Ausdruck des Terms ändert sich also nicht, sondern nur das Aussehen. Schau dir hierzu folgendes Beispiel mit den zwei unbekannten Werten $x$ und $y$ an:
Beispiel
Beispiel
Forme folgenden Term um: $7x \;+\;3y\;-2\;=4y\;+\;5x\;+5$
Beim Umformen von Termen werden die x-Werte jeweils zusammen mit allen Zahlen ohne Variablen auf eine Seite gebracht. Auf die andere Seite kommen alle y-Werte.
In unserem Beispiel würde also schrittweise jeder x-Wert und jede Zahl ohne Variable auf die linke Seite vom Gleichheitszeichen gebracht werden. Danach werden alle y-Werte auf die rechte Seite vom Gleichheitszeichen gebracht:
$7x \;+\;3y\;-2\;=4y\;+\;5x\;+\;5 \;\;\; |-5x$
$7x \textcolor{BrickRed}{-\;5x} \;+\;3y\;-2\;=4y\;-\;5\;\;\;\;\;|+5$
$7x\;-5x\;+\;3y\;-2\;\textcolor{BrickRed}{+\;5}\;=\;4y\;\;\;\;|-3y$
$7x\;-5x\;-2\;+\;5\;=\;4y\;-\;3y$
Zuletzt vereinfachen wir den Term, indem wir alles zusammenfassen, was wir zusammenfassen können:
$2x\;+\;3\;=\;y$
Eine Termumformung muss aber nicht immer so komplex wie in unserem Beispiel sein. Man bezeichnet schon das Zusammenfassen von gleichen Variablen, die mehrfach im Term vorkommen, als Termumformung.
Also ist auch das Umformen von $x \;+\;2x\;+\;3x$ in $6x$ eine Termumformung.
Termumformungen mit Klammern
Das Umformen von Termen mit Klammern ist mithilfe des Distributivgesetzes möglich. Zuerst werden die Klammern aufgelöst und dann wird der Term, wie oben, vereinfacht. Im folgenden Beispiel zeigen wir dir, wie du die Klammern auflöst:
Beispiel
Beispiel
Forme um: $7 \cdot (3+2x)=35$
Nach dem Distributivgesetz können wir die beiden Werte in der Klammer jeweils mit $7$ multiplizieren und erhalten:
$7 \cdot 3\; +\; 7 \cdot 2x \; =\; 35$
Weiter zusammengefasst ergibt das:
$21+14x=35$
Bringen wir jetzt noch die Zahlen auf eine und das $x$ auf die andere Seite ergeben sich folgende Rechenschritte:
$21+14x=35~~~|-21$
$14x=14~~~~~~|:14$
$x=1$
Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Dabei wünschen wir dir viel Spaß und Erfolg!
Teste dein Wissen!
Bilde die Termumformung von $10x+10=100$ und berechne das $x$.
Forme folgenden Term um:
$12+3x=45$
Ist die Termumformung des Terms $(2x+3)\cdot 2=14$ korrekt? Markiere die richtige Lösung.
Welche Gleichung passt zu $x=5$?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema





























Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar
(kostenlos und jederzeit)