Schriftlich Dividieren mit Komma
In diesem Kapitel befassen wir uns mit der schriftlichen Division. Das ist eine einfache Methode, mit der du große Zahlen ohne Taschenrechner dividieren kannst. Im Folgenden werden wir eine Beispielaufgabe zur schriftlichen Division durchrechnen und die Regeln für die schriftliche Division erklären.
Methode
Die Grundlage für dieses Kapitel bildet das Wissen über die Division. Falls du nicht mehr genau weißt, wie man dividiert, dann schau noch einmal im Lerntext zum Thema Division nach. Dort findest du nochmal eine Erklärung zur schriftlichen Division.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Schriftliche Division
Du kennst bereits die Division. Das schriftliche Dividieren unterscheidet sich nicht von der Division an sich, sondern ist nur eine Methode, mit der du große Zahlen einfacher dividieren kannst, ohne den Taschenrechner verwenden zu müssen. Du kannst also damit dann schriftlich rechnen. Schauen wir uns hierzu eine Beispielaufgabe an:
Beispiel
Aufgabenstellung: Dividiere $1596 \; $ durch $14$.
Um die beiden Zahlen dividieren zu können, schreiben wir sie erst einmal nebeneinander:
$1596 \; : \; 14 \; =$
Im nächsten Schritt schauen wir, ob die erste Zahl der $1596$ durch die $14$ teilbar ist. Die $1$ ist nicht durch $14$ teilbar, also nehmen wir die zweite Zahl auch dazu:
$15 \; : \; 14$ ergibt $1$, Rest $1$. Den Rest schreiben wir, wie auf dem Bild ersichtlich, unter die Division der beiden Zahlen und die Lösung hinter das Gleichheitszeichen:
Da sich die entstandene $1$ nicht durch $14$ teilen lässt, ziehen wir die $9$ herunter und die so entstandene $19$ durch $14$ teilen:
Das Ergebnis der Division von $19$ durch $14$ ist $1$. Diese schreiben wir neben die $1$ der ersten Division. Der Rest, $5$, wird wieder für den nächsten Schritt benötigt. Wir ziehen die $6$ hinter die $5$ und erhalten $56$, welche wir wieder durch $14$ teilen.
Die Zahl $56$ ist durch $14$ teilbar, es ergibt sich $4$. Diese schreiben wir neben die beiden Einsen und erhalten das Ergebnis der Division, nämlich $114$.
Um jetzt zu überprüfen, ob das Ergebnis stimmt, kannst du das entstandene Ergebnis $114$ mit $14$ multiplizieren. Es sollte dann das Ergebnis $1596$ herauskommen.
Schriftliches Dividieren - Der Rest
Bei der schriftlichen Division, wie auch bei der "normalen" Division, kann ein Rest übrig bleiben. Dieser wird dann nach dem Ergebnis dargestellt. Die folgende Abbildung zeigt, wie die schriftliche Division mit Rest funktioniert:
Schriftliches Dividieren - Die Probe
Um jetzt zu überprüfen, ob das errechnete Ergebnis stimmt, macht man eine Probe. Bei dieser wird das Ergebnis der Division, also der Quotient, mit dem Divisor multipliziert. Es sollte der Dividend entstehen.
Achtung: Wenn dein Quotient jedoch einen Rest hatte, dann musst du den Rest noch zum Ergebnis dazu addieren. In unserer Abbildung wäre das also:
$(24 \cdot 5) \; + \; 3 \;=\; 123$
Merke
Die schriftliche Division ist eine Methode zum einfachen Dividieren großer Zahlen.
Bei der schriftlichen Division wird der Rest hinter das Ergebnis geschrieben.
Bei der Probe wird der Quotient mit dem Divisor multipliziert und der Rest dazu addiert.
Zur Vertiefung dieses Themas schau auch noch einmal in die Aufgaben zur schriftlichen Division! Dabei wünschen wir dir viel Spaß und Erfolg!
Teste dein Wissen!
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Hol dir Hilfe beim Studienkreis!
Selbst-Lernportal Online
Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!
- Online-Chat 14-20 Uhr
- 700 Lerntexte & Videos
- Über 250.000 Übungsaufgaben
Einzelnachhilfe Online
Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!
- Online-Nachhilfe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Nachhilfe in deiner Nähe
Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Nachhilfe in deiner Nähe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer