Schriftlich Dividieren mit Komma
In diesem Kapitel befassen wir uns mit der schriftlichen Division. Das ist eine einfache Methode, mit der du große Zahlen ohne Taschenrechner dividieren kannst. Im Folgenden werden wir eine Beispielaufgabe zur schriftlichen Division durchrechnen und die Regeln für die schriftliche Division erklären.
Methode
Methode
Die Grundlage für dieses Kapitel bildet das Wissen über die Division. Falls du nicht mehr genau weißt, wie man dividiert, dann schau noch einmal im Lerntext zum Thema Division nach. Dort findest du nochmal eine Erklärung zur schriftlichen Division.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Schriftliche Division
Du kennst bereits die Division. Das schriftliche Dividieren unterscheidet sich nicht von der Division an sich, sondern ist nur eine Methode, mit der du große Zahlen einfacher dividieren kannst, ohne den Taschenrechner verwenden zu müssen. Du kannst also damit dann schriftlich rechnen. Schauen wir uns hierzu eine Beispielaufgabe an:
Beispiel
Beispiel
Aufgabenstellung: Dividiere $1596 \; $ durch $14$.
Um die beiden Zahlen dividieren zu können, schreiben wir sie erst einmal nebeneinander:
$1596 \; : \; 14 \; =$
Im nächsten Schritt schauen wir, ob die erste Zahl der $1596$ durch die $14$ teilbar ist. Die $1$ ist nicht durch $14$ teilbar, also nehmen wir die zweite Zahl auch dazu:

$15 \; : \; 14$ ergibt $1$, Rest $1$. Den Rest schreiben wir, wie auf dem Bild ersichtlich, unter die Division der beiden Zahlen und die Lösung hinter das Gleichheitszeichen:

Da sich die entstandene $1$ nicht durch $14$ teilen lässt, ziehen wir die $9$ herunter und die so entstandene $19$ durch $14$ teilen:

Das Ergebnis der Division von $19$ durch $14$ ist $1$. Diese schreiben wir neben die $1$ der ersten Division. Der Rest, $5$, wird wieder für den nächsten Schritt benötigt. Wir ziehen die $6$ hinter die $5$ und erhalten $56$, welche wir wieder durch $14$ teilen.

Die Zahl $56$ ist durch $14$ teilbar, es ergibt sich $4$. Diese schreiben wir neben die beiden Einsen und erhalten das Ergebnis der Division, nämlich $114$.
Um jetzt zu überprüfen, ob das Ergebnis stimmt, kannst du das entstandene Ergebnis $114$ mit $14$ multiplizieren. Es sollte dann das Ergebnis $1596$ herauskommen.
Schriftliches Dividieren - Der Rest
Bei der schriftlichen Division, wie auch bei der "normalen" Division, kann ein Rest übrig bleiben. Dieser wird dann nach dem Ergebnis dargestellt. Die folgende Abbildung zeigt, wie die schriftliche Division mit Rest funktioniert:

Schriftliches Dividieren - Die Probe
Um jetzt zu überprüfen, ob das errechnete Ergebnis stimmt, macht man eine Probe. Bei dieser wird das Ergebnis der Division, also der Quotient, mit dem Divisor multipliziert. Es sollte der Dividend entstehen.
Achtung: Wenn dein Quotient jedoch einen Rest hatte, dann musst du den Rest noch zum Ergebnis dazu addieren. In unserer Abbildung wäre das also:
$(24 \cdot 5) \; + \; 3 \;=\; 123$
Merke
Merke
Die schriftliche Division ist eine Methode zum einfachen Dividieren großer Zahlen.
Bei der schriftlichen Division wird der Rest hinter das Ergebnis geschrieben.
Bei der Probe wird der Quotient mit dem Divisor multipliziert und der Rest dazu addiert.
Zur Vertiefung dieses Themas schau auch noch einmal in die Aufgaben zur schriftlichen Division! Dabei wünschen wir dir viel Spaß und Erfolg!
Teste dein Wissen!
Welche der Rechenwege stimmen zu folgendem Term:
$92\;:\;4$
Wie lautet die Lösung zu folgender Division: $755 \;: \;5$ ?
Rechne schriftlich.
Wie lautet die Lösung für folgende Division $876 \;:\;5$ ?
Kann bei der schriftlichen Division ein Rest entstehen?
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Weitere Erklärungen & Übungen zum Thema





























Hol dir Hilfe beim Studienkreis und frag einen Lehrer!
Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.
- Sofort, ohne Termin
- Online-Chat 14 – 21 Uhr
- Erfahrene Mathematik-Lehrer
Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.
- Zum Wunschtermin
- Online-Einzelgespräch
- Geprüfte Nachhilfelehrer
Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Zum Wunschtermin
- In deiner Stadt
- Geprüfte Nachhilfelehrer
- Nachhilfe Berlin
- Nachhilfe München
- Nachhilfe Nürnberg
- Nachhilfe Köln
- Nachhilfe Düsseldorf
- Nachhilfe Dortmund
- Nachhilfe Hamburg
- Nachhilfe Hannover
- Nachhilfe Bremen
- Nachhilfe Leipzig
- Nachhilfe Dresden
Standort nicht gefunden? Rund 1000 Nachhilfe-Standorte bundesweit!
Nachhilfe gesucht
Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.
- Über 250.000 Übungsaufgaben
- 700 Lernvideos
- Original-Abi-Klausuren
Unsere Kunden über den Studienkreis
Wir sind durchgehend für dich erreichbar
(kostenlos und jederzeit)