Mathematik > Zahlenlehre und Rechengesetze

Fläche und Volumen - Einheiten umrechnen

Inhaltsverzeichnis:

In diesem Text erklären wir dir, wie man Größen umrechnen kann, genauer gesagt, wie Flächeneinheiten und Volumeneinheiten umgerechnet werden können und worin der Unterschied liegt. Wir zeigen dir, wie man z.B. Quadratzentimeter in Quadratmeter oder Kubikzentimeter in Kubikmeter umrechnen kann.

Methode

Methode

Hier klicken zum Ausklappen

Fläche
Formel: Länge mal Breite $= a\cdot b$
Einheit: $m\textcolor{red}{^2}$

Volumen
Formel: Länge mal Breite mal Höhe $ = a\cdot b\cdot c$
Einheit: $m \textcolor{red}{^3}$

Flächen

Eine Fläche ist zweidimensional. Das bedeutet, dass sie aus zwei Dimensionen, also Länge und Breite, bestimmt wird. Eine Strecke ist zum Beispiel nur eindimensional, da sie nur eine Länge hat. 

Die Einheit wird in Quadratmeter angegeben, da es sich um zwei Längen handelt, die malgenommen wurden. $\rightarrow m \cdot m = m^2$.

Es macht keinen Sinn sehr große Flächen, wie zum Beispiel die Gesamtfläche Deutschlands, in Quadratmetern anzugeben. Daher werden große Flächen oft in Quadratkilometern ($km^2$) angegeben. Deutschlands Fläche ist ca. $357.000 km^2$ groß.

Flächen umrechnen

umwandlung_flaeche
Abbildung: Umwandlung von Flächeneinheiten

Die kleinste Einheit, die wir hier besprechen, sind Quadratmillimeter. 

Die Größe eines Rechtecks ist gegeben. Es ist $10 cm$ lang und $20 cm$ breit.

$10  \textcolor{red}{cm} \cdot 20  \textcolor{red}{cm} = 200  \textcolor{red}{cm^2}$

Daraus ergibt sich, dass die Fläche des Rechtecks $200 cm^2$ groß ist. Dies soll nun in Quadratdezimeter umgerechnet werden. Wir rechnen zuerst die Längeneinheiten um:

$1 dm \cdot 2 dm = 2 dm^2$

Wir sehen, dass nicht wie bei den Längeneinheiten nur eine Null weggestrichen, sondern zwei Nullen weggestrichen werden. Und so ist das bei allen anderen Flächeneinheitsumwandlungen auch.

gegebene Einheitumgerechnet in $m^2$
$1 km^2$$1000000 m^2$
$1 ha$$10000 m^2$
$1 a$$100 m^2$
$1 m^2$$1 m^2$
$1 dm^2$$0,01 m^2$
$1 cm^2$$0,0001 m^2$
 $1 mm^2$$0,000001 m^2$

Wir sehen, dass das Komma jeweils in Zweierschritten verschoben wird.

Die Einheiten können auch untereinander umgerechnet werden.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Volumen

Ein Volumen ist dreidimensional, da es aus drei Dimensionen zusammengesetzt wird. Diese Dimensionen sind Länge, Breite und Höhe. Ein Raum hat beispielsweise ein Volumen. Er kann zum Beispiel $10 m$ lang, $5 m$ breit und $2m$ hoch sein. Diese Längen werden alle malgenommen, um das Volumen zu erhalten.
$V = 10  \textcolor{red}{m} \cdot 5  \textcolor{red}{m}\cdot 2  \textcolor{red}{m} = 100  \textcolor{red}{m^3}$. Die Einheit ist Kubikmeter, da Meter dreimal malgenommen wird. 

Volumen umrechnen

umwandlung_volumen
Abbildung: Umwandlung von Volumeneinheiten

Das zuvor berechnete Volumen des Raumes ($100 m^3 $) soll nun in $dm^3$ umgerechnet werden. Dafür rechnen wir zuerst die einzelnen Meter-Angaben um:
$V = 100 dm \cdot 50 dm \cdot 20 dm = 100000 dm^3$
Bei jeder Längenangabe wurde mal 10 gerechnet (eine Null wurde angefügt), somit wird im Endergebnis mal tausend gerechnet (es werden drei Nullen hinzugefügt). 

So ist es bei allen Umrechnungen von Volumeneinheiten, es werden jeweils drei Nullen hinzugefügt oder weggestrichen. 

Einheiten umrechnen - größer in kleiner

Was müssen wir machen, wenn wir eine größere Einheit in eine kleinere umrechnen wollen? Wie wir am oberen Beispiel sehen können, müssen für jede kleine Einheit drei Nullen hinzugefügt werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

von $1 m^3$ in $cm^3$ umrechnen

Wir starten von $m^3$ in $dm^3$ $\rightarrow 000$

von $dm^3$ in $cm^3$ $\rightarrow 000$

Da wir zweimal die Einheit verkleinern, müssen zweimal drei Nullen angehängt werden.
$1 m^3 = 1000.000 cm^3$

Einheiten umrechnen - kleiner in größer

Um von einer kleineren Einheit in die nächstgrößere umzurechnen, müssen drei Nullen weggestrichen werden oder das Komma um drei Stellen nach links verschoben werden.

Beispiel

Beispiel

Hier klicken zum Ausklappen

von $mm^3$ in $m^3$

Wir starten, indem $mm^3$ in $cm^3$ umgerechnet werden, dann folgen $cm^3$ in $dm^3$ und von $dm^3$ in $m^3$.

Also sind es insgesamt drei Schritte. Das Komma muss um $3\cdot 3$, also $9$ Stellen verschoben werden.
$\rightarrow 1 mm^3 = 0,000000001 m^3$

Sollen $15000mm^3$ in $m^3$ umgerechnet werden, gehen wir genauso vor:

$0,_{\textcolor{blue}{6}}0,_{\textcolor{blue}{5}},1,_{\textcolor{blue}{4}}5,_{\textcolor{blue}{3}}0,_{\textcolor{blue}{2}}0,_{\textcolor{blue}{1}}0$ 

$15000mm^3 = 0,0000015 m^3$

Nun kennst du dich mit dem Umrechnen von Einheiten aus und weißt, wie man Flächen und Volumen umrechnen kann. In den Übungsaufgaben kannst du überprüfen, ob du Einheiten umrechnen kannst und dabei mit Volumen und Flächen zurechtkommst. Wir wünschen dir viel Erfolg dabei!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie berechnet man eine Fläche und ein Volumen. Was ist die dazugehörige Einheit?

Teste dein Wissen!

$120,5 m^2$
sind umgerechnet:

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Sind die folgenden Umrechnungen korrekt? Markiere die richtigen Antworten!

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Sind die folgenden Umrechnungen korrekt? Markiere die richtigen Antworten!

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis und frag einen Lehrer!

Lehrer sofort fragen

Du benötigst Hilfe bei einer Aufgabe? Nutze die Mathematik-Hausaufgabenhilfe und bespreche deine Aufgabe sofort ohne Termin per Online-Chat mit einem Mathematik-Lehrer.

  • Sofort, ohne Termin
  • Online-Chat 14 – 21 Uhr
  • Erfahrene Mathematik-Lehrer
Jetzt Lehrer kostenlos fragen
Lehrer zum Wunschtermin online fragen

Du benötigst häufiger Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik Online-Nachhilfe und verbessere deine Mathematik-Kenntnisse.

  • Zum Wunschtermin
  • Online-Einzelgespräch
  • Geprüfte Nachhilfelehrer
Gratis Probestunde vereinbaren
Lehrer zum Wunschtermin in deiner Nähe fragen

Du möchtest lieber einen Lehrer der Mathematik-Nachhilfe aus deiner Stadt im persönlichen und direkten Gespräch fragen? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

  • Zum Wunschtermin
  • In deiner Stadt
  • Geprüfte Nachhilfelehrer

Gratis Probestunde vereinbaren

Selbst-Lernportal
Wissen vertiefen und selber üben

Du möchtest mehr Aufgaben? Zugriff auf alle Aufgaben erhältst du im Studienkreis Lernportal.

  • Über 250.000 Übungsaufgaben
  • 700 Lernvideos
  • Original-Abi-Klausuren
Jetzt kostenlos entdecken
Bewertungen

Unsere Kunden über den Studienkreis

Susanne S., vom 2019-10-29
Den Terminwünschen konnte entsprochen werden; kurzfristige Änderungen wurde entgegengekommen; die Leistung hat sich verbessert, das Selbstvertrauen ist gewachsen; wir sind sehr zufrieden
anonymisiert, vom 2019-10-18
Alles freundlich, kompetent und schülerorientiert
Corinna O., vom 2019-10-17
alles gut
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
N-tv Gütesiegel
TÜV-Gütesiegel
Die Welt Service-Champions
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um deinen konkreten Nachhilfebedarf zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Bei welchem Thema gibt es besondere Schwierigkeiten?
  • "Wann hättest du generell Zeit für den Unterricht?"

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/

Schon registriert? Hier einloggen

Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Diese Website verwendet Cookies für Analysen, personalisierte Inhalte und interessenbezogene Anzeigen. Indem Sie diese Website weiter nutzen, erklären Sie sich mit dieser Verwendung einverstanden. Weitere Informationen
8617