Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Fläche und Volumen - Einheiten umrechnen

Fläche & Volumen - Einheiten umrechnen! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

In diesem Text erklären wir dir, wie man Größen umrechnen kann, genauer gesagt, wie Flächeneinheiten und Volumeneinheiten umgerechnet werden können und worin der Unterschied liegt. Wir zeigen dir, wie man z.B. Quadratzentimeter in Quadratmeter oder Kubikzentimeter in Kubikmeter umrechnen kann.

Methode

Fläche
Formel: Länge mal Breite $= a\cdot b$
Einheit: $m\textcolor{red}{^2}$

Volumen
Formel: Länge mal Breite mal Höhe $ = a\cdot b\cdot c$
Einheit: $m \textcolor{red}{^3}$

Flächen

Eine Fläche ist zweidimensional. Das bedeutet, dass sie aus zwei Dimensionen, also Länge und Breite, bestimmt wird. Eine Strecke ist zum Beispiel nur eindimensional, da sie nur eine Länge hat. 

Die Einheit wird in Quadratmeter angegeben, da es sich um zwei Längen handelt, die malgenommen wurden. $\rightarrow m \cdot m = m^2$.

Es macht keinen Sinn sehr große Flächen, wie zum Beispiel die Gesamtfläche Deutschlands, in Quadratmetern anzugeben. Daher werden große Flächen oft in Quadratkilometern ($km^2$) angegeben. Deutschlands Fläche ist ca. $357.000 km^2$ groß.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Flächen umrechnen

umwandlung_flaeche
Abbildung: Umwandlung von Flächeneinheiten

Die kleinste Einheit, die wir hier besprechen, sind Quadratmillimeter. 

Die Größe eines Rechtecks ist gegeben. Es ist $10 cm$ lang und $20 cm$ breit.

$10  \textcolor{red}{cm} \cdot 20  \textcolor{red}{cm} = 200  \textcolor{red}{cm^2}$

Daraus ergibt sich, dass die Fläche des Rechtecks $200 cm^2$ groß ist. Dies soll nun in Quadratdezimeter umgerechnet werden. Wir rechnen zuerst die Längeneinheiten um:

$1 dm \cdot 2 dm = 2 dm^2$

Wir sehen, dass nicht wie bei den Längeneinheiten nur eine Null weggestrichen, sondern zwei Nullen weggestrichen werden. Und so ist das bei allen anderen Flächeneinheitsumwandlungen auch.

gegebene Einheitumgerechnet in $m^2$
$1 km^2$$1000000 m^2$
$1 ha$$10000 m^2$
$1 a$$100 m^2$
$1 m^2$$1 m^2$
$1 dm^2$$0,01 m^2$
$1 cm^2$$0,0001 m^2$
 $1 mm^2$$0,000001 m^2$

Wir sehen, dass das Komma jeweils in Zweierschritten verschoben wird.

Die Einheiten können auch untereinander umgerechnet werden.

Volumen

Ein Volumen ist dreidimensional, da es aus drei Dimensionen zusammengesetzt wird. Diese Dimensionen sind Länge, Breite und Höhe. Ein Raum hat beispielsweise ein Volumen. Er kann zum Beispiel $10 m$ lang, $5 m$ breit und $2m$ hoch sein. Diese Längen werden alle malgenommen, um das Volumen zu erhalten.
$V = 10  \textcolor{red}{m} \cdot 5  \textcolor{red}{m}\cdot 2  \textcolor{red}{m} = 100  \textcolor{red}{m^3}$. Die Einheit ist Kubikmeter, da Meter dreimal malgenommen wird. 

Volumen umrechnen

umwandlung_volumen
Abbildung: Umwandlung von Volumeneinheiten

Das zuvor berechnete Volumen des Raumes ($100 m^3 $) soll nun in $dm^3$ umgerechnet werden. Dafür rechnen wir zuerst die einzelnen Meter-Angaben um:
$V = 100 dm \cdot 50 dm \cdot 20 dm = 100000 dm^3$
Bei jeder Längenangabe wurde mal 10 gerechnet (eine Null wurde angefügt), somit wird im Endergebnis mal tausend gerechnet (es werden drei Nullen hinzugefügt). 

So ist es bei allen Umrechnungen von Volumeneinheiten, es werden jeweils drei Nullen hinzugefügt oder weggestrichen. 

Einheiten umrechnen - größer in kleiner

Was müssen wir machen, wenn wir eine größere Einheit in eine kleinere umrechnen wollen? Wie wir am oberen Beispiel sehen können, müssen für jede kleine Einheit drei Nullen hinzugefügt werden.

Beispiel

von $1 m^3$ in $cm^3$ umrechnen

Wir starten von $m^3$ in $dm^3$ $\rightarrow 000$

von $dm^3$ in $cm^3$ $\rightarrow 000$

Da wir zweimal die Einheit verkleinern, müssen zweimal drei Nullen angehängt werden.
$1 m^3 = 1000.000 cm^3$

Einheiten umrechnen - kleiner in größer

Um von einer kleineren Einheit in die nächstgrößere umzurechnen, müssen drei Nullen weggestrichen werden oder das Komma um drei Stellen nach links verschoben werden.

Beispiel

von $mm^3$ in $m^3$

Wir starten, indem $mm^3$ in $cm^3$ umgerechnet werden, dann folgen $cm^3$ in $dm^3$ und von $dm^3$ in $m^3$.

Also sind es insgesamt drei Schritte. Das Komma muss um $3\cdot 3$, also $9$ Stellen verschoben werden.
$\rightarrow 1 mm^3 = 0,000000001 m^3$

Sollen $15000mm^3$ in $m^3$ umgerechnet werden, gehen wir genauso vor:

$0,_{\textcolor{blue}{6}}0,_{\textcolor{blue}{5}},1,_{\textcolor{blue}{4}}5,_{\textcolor{blue}{3}}0,_{\textcolor{blue}{2}}0,_{\textcolor{blue}{1}}0$ 

$15000mm^3 = 0,0000015 m^3$

Nun kennst du dich mit dem Umrechnen von Einheiten aus und weißt, wie man Flächen und Volumen umrechnen kann. In den Übungsaufgaben kannst du überprüfen, ob du Einheiten umrechnen kannst und dabei mit Volumen und Flächen zurechtkommst. Wir wünschen dir viel Erfolg dabei!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Wie berechnet man eine Fläche und ein Volumen. Was ist die dazugehörige Einheit?

Teste dein Wissen!

$120,5 m^2$
sind umgerechnet:

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Sind die folgenden Umrechnungen korrekt? Markiere die richtigen Antworten!

(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Sind die folgenden Umrechnungen korrekt? Markiere die richtigen Antworten!

(Es können mehrere Antworten richtig sein)
Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

09.09.2024 , von Meryem S.
Sehr zufrieden! Ich wünschte ich hätte viel eher mich dazu entschieden. Lehrer sowie Leitung sind hilfsbereit und stellen sich auf die Bedürfnisse des Kindes ein. Vielen Dank dafür
09.09.2024 , von Svetlana S.
Freundliche und professionelle Mitarbeiter
09.09.2024 , von Juliane L.
Gute Kommunikation mit der Leitung Frau Gonser geht individuell Anliegen ein . Innerhalb von wenigen Tagen konnten Nachhilfe Stunden starten
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8617