Fläche und Volumen - Einheiten umrechnen
In diesem Text erklären wir dir, wie man Größen umrechnen kann, genauer gesagt, wie Flächeneinheiten und Volumeneinheiten umgerechnet werden können und worin der Unterschied liegt. Wir zeigen dir, wie man z.B. Quadratzentimeter in Quadratmeter oder Kubikzentimeter in Kubikmeter umrechnen kann.
Methode
Fläche
Formel: Länge mal Breite $= a\cdot b$
Einheit: $m\textcolor{red}{^2}$
Volumen
Formel: Länge mal Breite mal Höhe $ = a\cdot b\cdot c$
Einheit: $m \textcolor{red}{^3}$
Flächen
Eine Fläche ist zweidimensional. Das bedeutet, dass sie aus zwei Dimensionen, also Länge und Breite, bestimmt wird. Eine Strecke ist zum Beispiel nur eindimensional, da sie nur eine Länge hat.
Die Einheit wird in Quadratmeter angegeben, da es sich um zwei Längen handelt, die malgenommen wurden. $\rightarrow m \cdot m = m^2$.
Es macht keinen Sinn sehr große Flächen, wie zum Beispiel die Gesamtfläche Deutschlands, in Quadratmetern anzugeben. Daher werden große Flächen oft in Quadratkilometern ($km^2$) angegeben. Deutschlands Fläche ist ca. $357.000 km^2$ groß.
- Über 700 Lerntexte & Videos
- Über 250.000 Übungen & Lösungen
- Sofort-Hilfe: Lehrer online fragen
- Gratis Nachhilfe-Probestunde
Flächen umrechnen
Die kleinste Einheit, die wir hier besprechen, sind Quadratmillimeter.
Die Größe eines Rechtecks ist gegeben. Es ist $10 cm$ lang und $20 cm$ breit.
$10 \textcolor{red}{cm} \cdot 20 \textcolor{red}{cm} = 200 \textcolor{red}{cm^2}$
Daraus ergibt sich, dass die Fläche des Rechtecks $200 cm^2$ groß ist. Dies soll nun in Quadratdezimeter umgerechnet werden. Wir rechnen zuerst die Längeneinheiten um:
$1 dm \cdot 2 dm = 2 dm^2$
Wir sehen, dass nicht wie bei den Längeneinheiten nur eine Null weggestrichen, sondern zwei Nullen weggestrichen werden. Und so ist das bei allen anderen Flächeneinheitsumwandlungen auch.
gegebene Einheit | umgerechnet in $m^2$ |
$1 km^2$ | $1000000 m^2$ |
$1 ha$ | $10000 m^2$ |
$1 a$ | $100 m^2$ |
$1 m^2$ | $1 m^2$ |
$1 dm^2$ | $0,01 m^2$ |
$1 cm^2$ | $0,0001 m^2$ |
$1 mm^2$ | $0,000001 m^2$ |
Wir sehen, dass das Komma jeweils in Zweierschritten verschoben wird.
Die Einheiten können auch untereinander umgerechnet werden.
Volumen
Ein Volumen ist dreidimensional, da es aus drei Dimensionen zusammengesetzt wird. Diese Dimensionen sind Länge, Breite und Höhe. Ein Raum hat beispielsweise ein Volumen. Er kann zum Beispiel $10 m$ lang, $5 m$ breit und $2m$ hoch sein. Diese Längen werden alle malgenommen, um das Volumen zu erhalten.
$V = 10 \textcolor{red}{m} \cdot 5 \textcolor{red}{m}\cdot 2 \textcolor{red}{m} = 100 \textcolor{red}{m^3}$. Die Einheit ist Kubikmeter, da Meter dreimal malgenommen wird.
Volumen umrechnen
Das zuvor berechnete Volumen des Raumes ($100 m^3 $) soll nun in $dm^3$ umgerechnet werden. Dafür rechnen wir zuerst die einzelnen Meter-Angaben um:
$V = 100 dm \cdot 50 dm \cdot 20 dm = 100000 dm^3$
Bei jeder Längenangabe wurde mal 10 gerechnet (eine Null wurde angefügt), somit wird im Endergebnis mal tausend gerechnet (es werden drei Nullen hinzugefügt).
So ist es bei allen Umrechnungen von Volumeneinheiten, es werden jeweils drei Nullen hinzugefügt oder weggestrichen.
Einheiten umrechnen - größer in kleiner
Was müssen wir machen, wenn wir eine größere Einheit in eine kleinere umrechnen wollen? Wie wir am oberen Beispiel sehen können, müssen für jede kleine Einheit drei Nullen hinzugefügt werden.
Beispiel
von $1 m^3$ in $cm^3$ umrechnen
Wir starten von $m^3$ in $dm^3$ $\rightarrow 000$
von $dm^3$ in $cm^3$ $\rightarrow 000$
Da wir zweimal die Einheit verkleinern, müssen zweimal drei Nullen angehängt werden.
$1 m^3 = 1000.000 cm^3$
Einheiten umrechnen - kleiner in größer
Um von einer kleineren Einheit in die nächstgrößere umzurechnen, müssen drei Nullen weggestrichen werden oder das Komma um drei Stellen nach links verschoben werden.
Beispiel
von $mm^3$ in $m^3$
Wir starten, indem $mm^3$ in $cm^3$ umgerechnet werden, dann folgen $cm^3$ in $dm^3$ und von $dm^3$ in $m^3$.
Also sind es insgesamt drei Schritte. Das Komma muss um $3\cdot 3$, also $9$ Stellen verschoben werden.
$\rightarrow 1 mm^3 = 0,000000001 m^3$
Sollen $15000mm^3$ in $m^3$ umgerechnet werden, gehen wir genauso vor:
$0,_{\textcolor{blue}{6}}0,_{\textcolor{blue}{5}},1,_{\textcolor{blue}{4}}5,_{\textcolor{blue}{3}}0,_{\textcolor{blue}{2}}0,_{\textcolor{blue}{1}}0$
$15000mm^3 = 0,0000015 m^3$
Nun kennst du dich mit dem Umrechnen von Einheiten aus und weißt, wie man Flächen und Volumen umrechnen kann. In den Übungsaufgaben kannst du überprüfen, ob du Einheiten umrechnen kannst und dabei mit Volumen und Flächen zurechtkommst. Wir wünschen dir viel Erfolg dabei!
Teste dein Wissen!
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Hol dir Hilfe beim Studienkreis!
Selbst-Lernportal Online
Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!
- Online-Chat 14-20 Uhr
- 700 Lerntexte & Videos
- Über 250.000 Übungsaufgaben
Einzelnachhilfe Online
Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!
- Online-Nachhilfe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer
Nachhilfe in deiner Nähe
Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.
- Nachhilfe in deiner Nähe
- Zum Wunschtermin
- Geprüfte Mathe-Nachhilfelehrer