Suche
Kontakt
>
Mathematik > Zahlenlehre und Rechengesetze

Assoziativgesetz - Übungen & Aufgaben

Assoziativgesetz - Übungen & Aufgaben! | Mathe verstehen mit dem Studienkreis
Inhaltsverzeichnis:

Das Assoziativgesetz ist eines der drei Rechengesetze in der Mathematik, das man schon sehr früh kennenlernt. Es gilt in sehr vielen Fällen, etwa der Addition oder der Multiplikation, später auch beim Rechnen mit Exponenten. Hier wollen wir dir die verschiedenen Möglichkeiten für die Addition und die Multiplikation zeigen und auch klären, warum das Assoziativgesetz nicht für die Division oder die Subtraktion gilt.

Assoziativgesetz

Das Assoziativgesetz, oft auch Verknüpfungsgesetz oder Verbindungsgesetz genannt, befasst sich mit der Verbindung von mehreren mathematischen Termen. Die Definition lautet:

Merke

In einem Summen- oder Produktterm mit mehr als zwei Termen dürfen die Faktoren und Summanden beliebig mit Klammern verbunden werden.

$(a + b) + c = a + (b+c)$

$(a \cdot b) \cdot c = a \cdot (b\cdot c)$

Wenn du also eine Rechenaufgabe lösen musst und dort nur multipliziert oder nur addiert wird, dann kannst du die Reihenfolge beliebig vertauschen. Wir schauen uns dies einmal an einigen Beispielen an.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispiele des Assoziativgesetzes

Wir fangen mit einem einfachen Additionsbeispiel an.

$ \textcolor{green}{(5 \; + \; 4)} \; +\; 3 \; + \; 2 \; + \; 1 \; = \textcolor{brown}{x}$

Hier wollen wir die Zahlen von $5$ bis $1$ addieren. Wir haben eine Klammer, die uns vorschreibt, die Zahlen $\textcolor{green}{5}$ und $\textcolor{green}{4}$ zuerst zu addieren. Gehen wir diesen Weg, erhalten wir $9\;$. 

Addieren wir jetzt noch die $1$ erhalten wir $10$. Die letzten beiden Zahlen dazu gerechnet ergibt dann $\; \textcolor{brown}{15}$. 

Wir können aber auch die Zahlen in einer anderen Reihenfolge addieren. Wenn wir die $3$ und die $2$ addieren, es ergibt sich $5$ und dann die $5$ aus der Klammer dazu addieren, erhalten wir $10$. Die $4$ und die $1$ dazu und es ergibt sich auch $\textcolor{brown}{15}$.

Genauso sieht es bei allen anderen Additionen aus. Du kannst dir also die Reihenfolge, in der du addierst, aussuchen. Wir haben im ersten Beispiel die Zahl $9$ mit der Zahl $1$ addiert, obwohl sie nicht hintereinander standen. Hier ein paar weitere Beispiele:

$533 \; +\; 11 \; +\; 57\; = \; 590 \; + \; 11 = \; 601$  oder $533 \; +\; 11 \; +\; 57\; = \; 533 \; + \; 68 = \; 601$

$92 \; + \; 31 \; + \; 7 \; + \; 70 = \; 92 \; +\; 101 \;+ \; 7 \;= \;193\;+\;7\;=\;200 $

Dasselbe gilt auch für die Multiplikation. Du kannst die Zahlen beliebig miteinander multiplizieren, egal ob Klammern gesetzt sind oder nicht. In den folgenden Beispielen hat man markiert, welche Zahlen zuerst multipliziert wurden.

$(\textcolor{blue}{5} \cdot 4) \cdot 3  \cdot \textcolor{blue}{2}\; =  10 \cdot 4 \cdot 3 = 30 \cdot 4 = 120$

$3 \cdot \textcolor{blue}{5} \cdot (\textcolor{blue}{7} \cdot 9) = \textcolor{blue}{35} \cdot 3 \cdot 9 = 105 \cdot 9 = 945$

Wann gilt das Assoziativgesetz nicht?

Es gibt zwei Ausnahmen für das Assoziativgesetz, die Subtraktion und die Division. Bei beiden Rechenoperationen darf nicht einfach jeder Term getauscht oder verrechnet werden, wann man möchte. Es ist wichtig, dass die erste Zahl, also der Dividend und der Minuend immer am Anfang stehen. Hier zwei Beispiele:

$\textcolor{blue}{40 : 4} : 2 = \textcolor{blue}{10} : 2 = \textcolor{green}{5}$ und nicht $\;\rightarrow \;40 : \textcolor{blue}{4 : 2} = 40 : 2 = \textcolor{brown}{20} $

$\textcolor{blue}{90 - 30} - 20 = \textcolor{blue}{60} - 20 = \textcolor{green}{40}$ und nicht $\;\rightarrow \;90 - \textcolor{blue}{30 - 20} = 90 - 10 = \textcolor{brown}{80} $

Hier kannst du dir die drei Rechengesetze Assoziativgesetz, Distributivgesetz und Kommutativgesetz als Lerntabelle herunterladen.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Finde die unbekannte Zahl ($\textcolor{blue}{x}$) heraus.
$(7+\textcolor{blue}{x})+3=15$

Teste dein Wissen!

Wende das Assoziativgesetz an.
$10 \cdot (3 \cdot 4)$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Wende das Assoziativgesetz richtig an.
$(404+67)+11$

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Welche Aussage stimmt über das Assoziativgesetz?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Hausaufgaben-Soforthilfe

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Online Einzelnachhilfe

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Stadt

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

17.05.2024
Meine Tochter fühlt sich sehr wohl, ist noch nicht lange dabei, aber laut ihren Berichten wird ihr das Thema sehr gut erklärt und gut verständlich beigebracht, nur an dem umsetzen hapert es noch.
15.05.2024 , von Natascha M.
Freundliches Team, Nachhilfe bringt was.
15.05.2024 , von Susan N.
Wir sind mit allem total zufrieden und vorallem ist unser Sohn zufrieden. Die erste tolle Note nach nur wenigen Stunden Nachhilfe. Danke an das Team in Dresden, ihr macht einen tollen Job.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung
  • Unverbindlich und kostenlos in 2 Probestunden testen
  • Sichere Notenverbesserung durch top Lehrkräfte
  • Innovativstes Lernpaket: App, Hausaufgaben Live-Chat uvm.
1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Bitte wählen Sie einen Studienkreis in Ihrer Nähe aus.

Bitte geben Sie hier Ihre Kontaktdaten ein.

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
7955