Mathematik > Wahrscheinlichkeits­rechnung und Statistik

Laplace Experiment: Regel, Beispiele, Aufgaben

Inhaltsverzeichnis:

In diesem Lerntext erklären wir dir alles zum Thema Laplace-Experimente, eine Art von Zufallsexperimenten, die du aus deinem Mathematikunterricht schon kennen wirst. Du wirst schnell verstehen, wie du bei dieser Art von Zufallsversuchen rechnest. Am Ende kannst du dein erlerntes Wissen zu Laplace und Wahrscheinlichkeiten in Aufgaben weiter vertiefen und kontrollieren.

Laplace Experiment - Definition

Ein Laplace Experiment ist eigentlich nichts anderes als das, was du in deinem Matheunterricht als Zufallsversuch kennenlernst - mit einer kleinen Einschränkung: Ein Laplace Experiment ist ein Zufallsversuch, bei dem die Wahrscheinlichkeiten aller möglichen Ergebnisse gleich sind. Typische Beispiele bei Laplace sind in der Regel das Werfen einer Münze oder eines gewöhnlichen Würfels. Das Besondere an diesen Versuchen ist, dass sie uns das Rechnen mit Wahrscheinlichkeiten vereinfachen. In Laplace-Experimenten gilt die Regel:

$P (E) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ der\ möglichen\ Ergebnisse}$

Wir müssen also einfach die Anzahl der Ergebnisse, die gewünscht sind, durch die Anzahl aller Ergebnisse dividieren.

Merke

Merke

Hier klicken zum Ausklappen

Ein Laplace Experiment ist ein Zufallsversuch, bei dem die Wahrscheinlichkeiten aller möglichen Ergebnisse gleich sind.

Es gilt:

$P (E) = \frac {Anzahl\ der\ gewünschten\ Ergebnisse}{Anzahl\ der\ möglichen\ Ergebnisse}$

Wie du siehst, ist die Rechnung für dich nicht neu. Und das ist nicht verwunderlich, da die allermeisten Zufallsexperimente, die du bis jetzt kennengelernt hast, Laplace-Experimente sind. Im Lerntext Zufallsversuche - Wahrscheinlichkeit von Ergebnissen berechnen kannst du nochmal alles Weitere dazu nachlesen.

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Pierre-Simon Laplace war ein französischer Mathematiker und Physiker, der um 1800 zu den Themen Wahrscheinlichkeitsrechnung und Differentialgleichungen forschte. Der Name Laplace kann dir in deinem Mathematikunterricht noch öfter begegnen.

Betrachten wir nun einige Beispiele, um den Unterschied zwischen Laplace-Experimenten und anderen Zufallsversuchen zu verstehen.

Teste kostenlos unser Selbst-Lernportal
  • Über 700 Lerntexte & Videos
  • Über 250.000 Übungen & Lösungen
  • Sofort-Hilfe: Lehrer online fragen
  • Gratis Nachhilfe-Probestunde

Beispiele für Laplace Experimente

Beispiel 1

Das erste "Laplace-Beispiel" ist ein wirklicher Klassiker in der Wahrscheinlichkeitsrechnung: das einmalige Werfen eines Würfels. Ein normaler Würfel hat sechs Seiten, die mit den Zahlen 1 bis 6 beschriftet sind. Jede Zahl hat die gleiche Wahrscheinlichkeit, gewürfelt zu werden.

Wahrscheinlichkeiten bei einem sechsseitigen Würfel
Würfel: alle möglichen Ergebnisse und ihre Wahrscheinlichkeiten

Jede Zahl wird mit einer Wahrscheinlichkeit von

$P(E) = \frac {1}{6} \approx 16,7 \%$

gewürfelt.

Betrachten wir die Wahrscheinlichkeit für das Ereignis "eine gerade Zahl würfeln":

Ereignis: "eine gerade Zahl würfeln"

Ereignismenge: $E= \{2, 4, 6\}$

$P (E) = \frac {3}{6} = \frac {1}{2}~~\widehat{=}~~50 \%$

Weitere Beispiele

Im folgenden Beispielkasten siehst du noch zwei weitere Beispiele, die dir beim Thema Laplace in Wahrscheinlichkeitsrechnung in Mathe begegnen können:

Beispiel

Beispiel

Hier klicken zum AusklappenWeitere Laplace-Experimente:
  • Das Werfen einer Münze: Die Wahrscheinlichkeit für Kopf und Zahl liegt jeweils bei $50 \%$
  • Das Drehen dieses Glücksrades: Jedes Feld hat eine Wahrscheinlichkeit von $ \frac {1}{6} \approx 16,7 \%$
Glücksrad mit sechs unterschiedlich, gleich wahrscheinlichen Ergebnissen.
Glücksrad mit sechs unterschiedlichen, jeweils gleich wahrscheinlichen Ergebnissen

Was sind keine Laplace-Aufgaben?

Schauen wir uns einmal an, welche Art von Zufallsversuch kein Laplace-Experiment ist. Es gibt einige Zufallsversuche, bei denen nicht alle möglichen Ergebnisse die gleiche Wahrscheinlichkeit haben.

links: flascher Würfel; rechts: Reißzwecke
links: falscher Würfel; rechts: Reißzwecke

Dazu gehören beispielsweise Würfel, bei denen eine bestimmte Zahl auf mehr als einer Seite abgebildet ist oder das Werfen einer Reißzwecke, die auf Grund ihrer Form nicht auf jeder Seite gleich wahrscheinlich liegen bleibt.

Nun weißt du, was ein Laplace-Experiment in Mathe ist, welche Regeln bei Laplace gelten und wie du die jeweiligen Wahrscheinlichkeiten bestimmen kannst. Vertiefe dein Wissen zu Laplace und Wahrscheinlichkeit in unseren Aufgaben. Dabei wünschen wir dir viel Spaß und Erfolg!

autoren-mathematik

Dein Autorenteam für Mathematik: Simon Wirth und Fabian Serwitzki

Diese Lernseite ist Teil eines interaktiven Online-Kurses zum Thema Mathematik. Das Mathematik-Team erklärt dir alles Wichtige zu deinem Mathematik-Unterricht!

Übungsaufgaben

Teste dein Wissen!

Teste dein Wissen!

Was ist ein Laplace-Experiment?

Teste dein Wissen!

Welche Rechenregel gilt bei einem Laplace-Versuch?

Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Markiere die richtigen Aussagen!

image






(Es können mehrere Antworten richtig sein)
Diese und weitere PDF-Übungsaufgaben findest du in unserem Selbst-Lernportal. Registriere dich jetzt gratis und lerne sofort weiter!
Teste dein Wissen!

Was ist kein Laplace-Experiment?

Aufgabenblätter & Lösungen
Mit wenigen Klicks die passenden Aufgaben und Lösungen zum Üben und Selbst-Lernen finden.
Du brauchst Hilfe?

Hol dir Hilfe beim Studienkreis!

Selbst-Lernportal Online

Zugriff auf alle Aufgaben erhältst du in unserem Selbst-Lernportal. Bei Fragen helfen dir unsere Lehrer der online Hausaufgabenhilfe - sofort ohne Termin!

  • Online-Chat 14-20 Uhr
  • 700 Lerntexte & Videos
  • Über 250.000 Übungsaufgaben

Jetzt kostenlos entdecken

Einzelnachhilfe Online

Du benötigst Hilfe in Mathematik? Dann vereinbare einen Termin bei einem Lehrer unserer Mathematik-Nachhilfe Online. Lehrer zum Wunschtermin online fragen!

Gratis Probestunde

Nachhilfe in deiner Nähe

Du möchtest Hilfe von einem Lehrer der Mathematik-Nachhilfe aus deiner Stadt erhalten? Dann vereinbare einen Termin in einer Nachhilfeschule in deiner Nähe.

Gratis Probestunde

Bewertungen

Unsere Kunden über den Studienkreis

28.04.2022 , von Kerstin T.
Prima Kontakt, die Lehrkräfte gehen prima auf die Kinder ein und nehmen sie mit. Motivation wird ganz groß geschrieben! Das ist sehr schön. Unsere Tochter geht gerne zum Studienkreis !
18.04.2022
Sehr flexibel bei Änderungen 👍🏼
05.04.2022
Unsere Tochter hat sich sehr wohl gefühlt.
Noch Fragen?

Wir sind durchgehend für dich erreichbar

0800 111 12 20
(kostenlos und jederzeit)
Online-Nachhilfe im Gratis-Paket kostenlos testen

Jetzt registrieren und kostenlose Probestunde anfordern.

Dein Gratis-Lernpaket:

  • Nachhilfe-Probestunden gratis
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig

Wir benötigen deine Telefonnummer zur Absprache von möglichen Unterrichtsterminen und um den am besten geeigneten Lehrer zu ermitteln. Deine Daten werden nicht an Dritte weitergegeben.

Hier ein paar Beispiele für Fragen, die wir dir telefonisch stellen könnten:

  • "Für welche Tage und Uhrzeiten wünschst du Nachhilfe?"
  • "In welchem Fach und bei welchen Themen wird Unterstützung benötigt?"
Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/
Hausaufgaben-Soforthilfe im Gratis-Paket kostenlos testen!

Jetzt registrieren und Lehrer sofort kostenlos im Chat fragen.

Dein Gratis-Lernpaket:

  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
  • Lern-Bibliothek: 1 Tag Gratis-Zugang
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Online Lern-Bibliothek kostenlos testen!

Jetzt registrieren und direkt kostenlos weiterlernen!

Dein Gratis-Lernpaket:

  • Lern-Bibliothek: 1 Tag Gratis-Zugang
  • Hausaufgaben-Soforthilfe: 15 Gratis-Minuten
  • Nachhilfe-Probestunden gratis
1 Kontaktdaten angeben
2 Fertig
Deine Daten werden von uns nur zur Bearbeitung deiner Anfrage gespeichert und verarbeitet. Weitere Informationen findest du hier: www.studienkreis.de/datenschutz/
Gutschein für 2 gratis Probestunden & unverbindliche Beratung

In einem unverbindlichen Beratungsgespräch lernen wir uns kennen und Ihr Kind kann unsere Profi-Nachhilfe in 2 Probestunden gratis testen.

1 Standort wählen
2 Kontaktdaten angeben
3 Fertig

Finden Sie den Studienkreis in Ihrer Nähe!
Geben Sie hier Ihre PLZ oder Ihren Ort ein.

Füllen Sie einfach das Formular aus. Den Gutschein sowie die Kontaktdaten des Studienkreises in Ihrer Nähe erhalten Sie per E-Mail. Der von Ihnen ausgewählte Studienkreis setzt sich mit Ihnen in Verbindung und berät Sie gerne!

Die Studienkreisleitung Ihres Standorts wird sich mit Ihnen in Verbindung setzen um einen Beratungstermin zu vereinbaren falls Sie dies noch nicht online getan haben.

Ihre Daten werden von uns nur zur Bearbeitung Ihrer Anfrage gespeichert und verarbeitet. Weitere Informationen finden Sie hier: www.studienkreis.de/datenschutz/

Vielen Dank für Ihr Interesse!

Wir haben Ihnen eine E-Mail geschickt. Der von Ihnen ausgewählte Studienkreis wird sich schnellstmöglich mit Ihnen in Verbindung setzen und Sie beraten.

*2x 45 Min. als Doppelstunde in einer kleinen, fachbezogenen Lerngruppe von drei bis max. fünf Schülern. Nur ein Gutschein pro Kunde. Gilt nur für Neukunden und nur in teilnehmenden Niederlassungen.
Nachhilfe mit Geld-zurück Garantie: Wenn Sie mit der Leistung Ihres Studienkreises nicht zufrieden sind, teilen Sie uns dies einfach bis zum Ende des ersten Monats mit. Dann endet Ihr Vertrag und Sie bekommen Ihr Geld ganz unbürokratisch zurück. Die Garantie gilt für alle Nachhilfe-Laufzeitverträge mit maximal acht Unterrichtseinheiten im ersten Monat – egal ob Unterricht in der kleinen Lerngruppe, Einzelunterricht oder Nachhilfe zur Prüfungsvorbereitung. Sie gilt nur in teilnehmenden Standorten und nicht für stundenweise gebuchte Nachhilfe (Kontingentvertrag).
8611